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A B S T R A C T

Smart meters installed at the user-level provide a new data source for managing water infrastructure. This
research explores the use of machine learning methods, including Random Forests (RFs), Artificial Neural
Networks (ANNs), and Support Vector Regression (SVR) to forecast hourly water demand at 90 accounts
using smart-metered data. Demands are predicted using lagged demand, seasonality, weather, and household
characteristics. Time-series clustering is applied to delineate data based on the time of day and day of the week,
which improves model performance. Two modeling approaches are compared. Individual models are developed
separately for each meter, and a Group model is trained using a data set of multiple meters. Individual models
predict demands at meters in the original data set with lower error than Group models, while the Group model
predicts demands at new meters with lower error than Individual models. Results demonstrate that RF and
ANN perform better than SVR across all scenarios.

1. Introduction1

Designing and operating water distribution systems rely on models2

and forecasts of water consumption. Water managers use operational3

or short-term water demand forecasts, ranging from one day to a few4

weeks, to efficiently manage devices, such as pumps and valves. Short-5

term forecasting models are based on data collected at the account-level6

using data that have historically been collected at monthly or quar-7

terly intervals, corresponding to billing cycles. Recently, municipalities8

and utilities have deployed smart water meters in the context of the9

smart cities paradigm (Berglund et al., 2020), providing new data10

about account-level demands at hourly or sub-hourly frequencies. Some11

utilities use a time resolution for reporting demands in the range of12

15 s to 30 min. Battery life and transmitting issues, however, limit the13

frequency of data collection, and other utilities collect water demand14

at an hourly frequency (Beal and Flynn, 2015). The use of smart meter15

data for developing models for forecasting demands at sub-hourly or16

hourly frequencies is limited to date. Unlike the energy sector, in which17

smart meters have been extensively deployed to forecast consumption18

as part of Advanced Metering Infrastructure (AMI) projects (Kavousian19

et al., 2013), the water sector has not benefited from the development20

and use of models that forecast water demand at the account or21

user-level with high temporal resolution.22

AMI can be deployed by water utilities to gain insight into water23

consumption at high spatial and temporal resolutions and to implement24
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advanced capabilities for water management (March et al., 2017; Stew- 25

art et al., 2018). AMI provides the technology to collect big data about 26

water consumption and to communicate unusual water consumption to 27

consumers for identifying post meter water leaks (Giurco et al., 2010; 28

Luciani et al., 2019). Smart meter data have been used to support 29

the development of water demand management policies (Cominola 30

et al., 2015), near real-time water distribution system models (Arandia- 31

Perez et al., 2014; Gurung et al., 2017), and enhanced hydraulic and 32

water quality models (Gurung et al., 2014; Creaco et al., 2017b). 33

AMI data was also used to develop descriptive water demand models 34

that were applied to identify appliance-level end uses (Cardell-Oliver, 35

2013; Nguyen et al., 2014; Gurung et al., 2015), to determine demand 36

patterns for daily consumption profiles and hourly peak values, (Beal 37

and Stewart, 2014; Cominola et al., 2018b), and to group households 38

with similar consumption behaviors (Cardell-Oliver et al., 2014). Fore- 39

casting models were developed to predict water consumption at the 40

next time step using data from smart meters that were placed at District 41

Metered Areas (DMAs) or at main pipes, with sub-minute reporting 42

frequencies (Brentan et al., 2018b; Donkor et al., 2014). These models 43

were developed using lagged demands or past consumption as predictor 44

variables (Romano and Kapelan, 2014; Chen and Boccelli, 2018), in 45

addition to exogenous variables, such as weather variables and social 46

characteristics (Sebri, 2016; Hussien et al., 2016). Data reported at 47
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monthly and annual frequencies at the account-level have been ana-1

lyzed to explore the effects of pricing on water consumption (Arbues2

et al., 2003) and the effects of rebate programs on the adoption of low-3

flow appliances (Price et al., 2014). Account-level data collected at high4

(sub-hourly) resolution allows researchers to parameterize residential5

water demand models (Alvisi et al., 2014; Gargano et al., 2016; Kofinas6

et al., 2018; Creaco et al., 2016), model water quality (Blokker et al.,7

2008), analyze water end-uses (Blokker et al., 2009; Buchberger and8

Wells, 1996; Creaco et al., 2017a; Mostafavi et al., 2018), develop9

models to describe demand (Gurung et al., 2017), develop conserva-10

tion policies (Maas et al., 2017), and evaluate feedback strategies to11

customers about their water consumption (Sonderlund et al., 2016).12

Account-level data collected at medium resolution can be used to13

develop forecasting models. Forecasting models can be used within a14

portfolio of management tools to identify leaks, explore water restric-15

tion policies during water supply interruptions, and design demand-16

management strategies to reduce peak demands (Monks et al., 2019).17

The high spatial resolution (at the user level) and temporal resolution18

of smart meter data increase variability and the presence of zero-valued19

data points in the data set. These characteristics lead to difficulties20

in forecasting water consumption (Cominola et al., 2018a). Variability21

emerges in the data due to factors including diverse end-uses, season-22

ality, and socio-economic conditions (Boyle et al., 2013). As a result,23

a limited number of studies have used account-level consumption data24

collected at a medium temporal resolution to develop models to fore-25

cast or classify water demand (Aksela and Aksela, 2011; Walker et al.,26

2015; McKenna et al., 2014; Candelieri, 2017). In this research, new27

forecasting models are developed using machine learning (ML) methods28

for hourly smart water data. ML has shown promising results for build-29

ing predictive models for high resolution demands (Savic et al., 2014).30

Unlike mechanistic regression models, ML techniques do not require the31

definition of an explicit relationship between water consumption and32

independent variables. ML methods have been applied to model and33

forecast water demand using traditionally available water demand data,34

such as billing records of water consumption at monthly or quarterly35

time steps (Jain and Ormsbee, 2002; Adamowski, 2008; Odan et al.,36

2012; Duerr et al., 2018). Support Vector Regression (SVR), Artificial37

Neural Networks (ANNs), and Random Forests (RFs) have been applied38

to model water demands at aggregate levels, such as the system and the39

DMA levels (Mouatadid and Adamowski, 2017; Gagliardi et al., 2017;40

Antunes et al., 2018). ANNs have performed better than traditional41

regression models in forecasting short-term water demands (Bougadis42

et al., 2005). Herrera et al. (2010) compared the performance of43

different models to forecast hourly water demand collected at a DMA44

in Spain and found that SVR, ANNs, and RFs performed similarly well45

to predict water demand.46

The research presented here tests the application of three ML mod-47

els, including RFs, ANNs, and SVR, to forecast hourly water demand48

based on the information provided by smart meters. Data were re-49

trieved from a set of 90 smart meters located in Cary, North Carolina,50

that reported hourly consumption in increments of 10 gallons per hour51

(gph) [1 gallon = 3.78 l] for a 12-month period in 2017. Time series52

clustering is explored to improve the accuracy of forecasts by creating53

separate models for distinct hours of the day. Models are explored with54

observed demands, the inclusion of weather, and social variables as pre-55

dictor variables. Results demonstrate that RF and ANN models perform56

better than SVR in accurately predicting water demands. Time series57

clustering improves model predictability. Two modeling approaches are58

compared. In the first approach, ML methods are developed for each59

smart meter separately to explore the level of predictability. In the60

second approach, the entire data set of smart meters is used to train a61

model to forecast water demand at any meter. Results demonstrate that62

the performance of the two modeling approaches is relatively similar;63

however, the individual models show a slightly lower error for existing64

meters, and the Group model predicts demands at new meters with65

lower error than individual models. The models developed through66

this research provide new tools for water management by providing67

demand forecasts at both existing and new accounts.68

2. Background 69

Four research studies explored the development of forecasting and 70

classification models using smart water meter data. These studies ana- 71

lyze hourly data collected at the account-level using Gaussian Mixture 72

models (Aksela and Aksela, 2011; McKenna et al., 2014), a coupled 73

evolutionary algorithm and ANN approach (Walker et al., 2015), and 74

a Support Vector Machine model (Candelieri, 2017). These studies 75

applied clustering to reduce the variability in data sets by grouping vec- 76

tors of data based on consumption (Aksela and Aksela, 2011; McKenna 77

et al., 2014) or time of day (Candelieri, 2017). To further reduce 78

variability, McKenna et al. (2014) excluded weekends from the data 79

set. The four data sets described by these studies varied in size: data 80

were collected at 81 meters over a three-month period (Aksela and 81

Aksela, 2011), 85 meters over a six-month period (McKenna et al., 82

2014), nine meters over a two-month period (Walker et al., 2015), 83

and 26 meters over a four-month period (Candelieri, 2017). These 84

studies tested the time of day, lagged demand, and average consump- 85

tion in a range of forms as demand predictors. Aksela and Aksela 86

(2011) used average weekly consumption to forecast water demand a 87

week ahead, whereas McKenna et al. (2014) classified daily demand 88

patterns. Walker et al. (2015) explored model inputs including the 89

reported water demand at the previous hour, the average consumption 90

of the prior seven days, and the time of the day to improve model 91

performance. Candelieri (2017) developed models to use the first six 92

hours of consumption as predictors for the remaining 18 h of a day. 93

All the models showed the importance of clustering water demand and 94

showed the use of some form of lagged demands (previous demands) 95

in developing predictive models. 96

Related research also explored how alternative predictors affect 97

hourly or sub-hourly demands. Research demonstrated that aggregate 98

(e.g., system-level) water consumption is significantly correlated with 99

weather data (Praskievicz and Chang, 2009; House-Peters et al., 2010) 100

and property characteristics (Aitken et al., 1994). Whereas the models 101

described in the paragraph above used only lagged water demands to 102

forecast future demands, recent work tested the correlation of weather 103

and property characteristics parameters with account-level hourly wa- 104

ter demand reported by smart meters (Xenochristou et al., 2019). More 105

than 1500 smart meters reporting consumption for a 20-month period 106

were analyzed to test predictors, including the building area, number 107

of occupants, household income, and maximum daily temperature for 108

correlation with hourly water demand. Results demonstrated that water 109

consumption is correlated to air temperature, especially during working 110

days in the spring and summer seasons. Further research explored 111

additional weather variables for correlation and demonstrated that 112

precipitation did not influence demands (Xenochristou et al., 2018). 113

3. Methods and materials 114

This section describes the procedure applied to forecast water de- 115

mand one hour ahead at the user-level using hourly data reported 116

by smart meters. The first subsection describes smart meter data and 117

exogenous predictor variables, including weather data and characteris- 118

tics of the households. The second subsection describes the time-series 119

clustering approach that is applied to group data based on time of day 120

and day of the week, and the third subsection describes the ML methods 121

that are applied to forecast water demand. 122

3.1. Data 123

3.1.1. Water consumption data 124

The data used in this study are collected from a set of 100 smart 125

meters that report hourly consumption at the account-level. The data 126

set represents a small sample of an ongoing project which has already 127

installed more than 60,000 smart meters in Cary, North Carolina, USA 128

(Town of Cary, NC). The accounts represented in this data set are 129
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Fig. 1. Data sets used in developing ML models. (a) An empirical cumulative distribution function demonstrates hourly water consumption for each of 85 smart meters. Colors
that can be seen in the online version are associated with different meters. The 𝑥-axis is restricted to 0 to 130 gph for visualization, (b) weather variables, and (c) histogram of
households characteristics.

located throughout the city and include residential and non-residential1

users. Water consumption was captured hourly during a 12-month2

period starting on January 1st of 2017. An iPerl meter, produced by3

Sensus, was installed at each house with a Smart Point transmitter and4

FlexNet data transmission technology. Meters transmit the hourly data5

using a data logger to the water utility after a four-hour period. To6

preserve battery life, the meters report data only when the hourly water7

consumption of the building is at least 10 gallons. The hourly water de-8

mand of the set of smart meters is characterized by high variability. The9

median of the data set is zero, and the meters periodically report hourly10

consumption values greater than 10 gallons. An empirical cumulative11

distribution function is used to represent the water consumption across12

all meters (Fig. 1a). As shown in Fig. 1a, the majority of data points13

are zero for all meters, which creates difficulties in predicting hourly14

demands. The variability of the data set also contributes to challenging15

issues in modeling water demand.16

Preliminary analysis was performed to preserve data continuity.17

The maximum number of data points reported by each meter is 876018

(number of hours in 2017), and a meter was excluded from the analysis19

if it reported zero consumption for more than 720 consecutive hours20

(approximately a month), based on the assumption that those meters21

correspond to an empty building or a malfunctioning data logger. Ten22

smart meters were discarded as a result of this screening process. Of23

the 90 remaining meters, ten meters are associated with accounts that24

are not single-family residential accounts. Data from 85 meters are25

used in training, validating, and testing the models. The data from26

the remaining five meters, which are all associated with residential27

accounts, are used in testing the models for performance at new meters.28

Outliers were identified using two criteria. During one week of the 29

observed period, most of the data loggers stopped transmitting informa- 30

tion due to a wide-scale power outage. When meters resumed working, 31

the data loggers reported cumulative values of water consumption, 32

generating misleading peaks. These outliers were removed from the 33

data set. The second criterion applied a threshold consumption of 500 34

gph, based on the experience of the utility. The threshold value was 35

exceeded by a minor number of data points (less than 5%), and no 36

meters were discarded due to this criterion. 37

3.1.2. Weather data 38

Weather data were retrieved from the nearest meteorological sta- 39

tion located at Raleigh–Durham international airport (RDU), which is 40

approximately seven miles (12.5 km) away from the location of the 41

households. Weather data that are included in this research are the last 42

24 h of air temperature (◦F) [32◦F = 0 ◦C], dew point (◦F), relative 43

humidity (%), the maximum hourly temperature of the last 24 h (◦F), 44

hourly precipitation of the last 24 h (in) [1 in = 25.4 mm], and the 45

occurrence of precipitation during the last 24 h as a binary variable. 46

Hourly precipitation during 2017 in Cary reports mostly zero values 47

with some hours reporting up to one inch of rain. The time sampling 48

resolution of the weather variables is hourly (Fig. 1b). 49

3.1.3. Household characteristics 50

A set of data was collected describing household characteristics, 51

including the building area (ft2) [1 m2 = 10.76 ft2], the lot area 52

(acres) [1 acre = 4047 m2], the building age (years), and the property 53

value (U.S. $). Data were retrieved from a GIS database made available 54



J.E. Pesantez et al.

through the Town of Cary (Town of Cary, 2013). Variation in household1

characteristics represented by the data set is shown in Fig. 1c.2

3.2. Time series clustering3

Similar to the work presented by Candelieri (2017), this study uses4

a clustering algorithm to group the average hourly water demand of5

the households into clusters that are based on the time of day. The 𝐾-6

means clustering algorithm (Lloyd, 1982) was applied to the average7

consumption at each hour of the day, where the average is calculated8

across all meters. The number of clusters was explored for its effects9

on the model performance, and Silhouette analysis was used to quan-10

titatively assess the most efficient number of clusters (Arbelaitz et al.,11

2013). The 𝑘-means++ algorithm (David and Vassilvitskii, 2007) was12

used to initialize cluster centers, which improves the running time13

of the 𝐾-means algorithm, and a random seed was used to initialize14

random clusters for a set of simulations. Clusters were generated using15

the sum of absolute differences as the distance metric. To account16

for variability due to the random generation of cluster centers, the17

clustering subroutine was run multiple times, and the most commonly18

repeated clusters were selected.19

3.3. Machine learning methods20

Three ML methods were applied to forecast short-term water de-21

mand. RFs, ANNs, and SVR were implemented using methods available22

through MATLAB 2019a (mathworks.com). Due to the range of the23

magnitude of the variables, the input data were normalized for the24

ANN models. Min–Max scaling was applied to normalize the data and25

convert the data into a range of −1 and +1 values. For the SVR26

models, data were standardized by centering and scaling each column27

of the predictor set using the mean and the standard deviation of each28

predictor, respectively. For the RF model, input data were used directly.29

3.3.1. Random forests30

RFs are represented by ensembles of decision trees, which are31

expanding structures of nodes with the application of binary splits32

(Breiman et al., 1984). Each node represents a predictor variable. The33

initial value of each node is the average of the response variable34

over all the observations of that variable. Splits are formed by using35

the inequality condition, and the performance of a split is evaluated36

through the Gini index, which measures how diverse the data are37

until a terminal node is reached. The tree size is determined based38

on the number of nodes, which is used as input to minimize the39

variance of each split. RFs are created through a bootstrap aggregation40

(bagging) process (Breiman, 1996), and data are re-sampled randomly41

with replacement. The use of ensemble modeling can improve the42

overall performance of the model, though overfitting and complexity43

issues may emerge (Breiman, 2001).44

Algorithmic settings for RF models include the number of trees45

in an ensemble and the leaf size, which is the minimum number of46

observations per terminal node (Herrera et al., 2010; Villarin and47

Rodriguez-Galiano, 2019). RFs are modeled by joining several individ-48

ual decision trees, which has proved to provide better results in terms49

of accuracy. An ensemble of decision trees creates a model that can50

be considered a ‘‘gray-box’’, where understanding which parameters51

lead to a good performance is more difficult, compared to models52

that are built using a single decision tree. The leaf size refers to the53

number of observations evaluated at each node, where a low number54

of observations will generate deep trees that may overfit data. On the55

other hand, a high number of observations may lead to poor model56

performance. These settings affect model accuracy and the computing57

time.58

3.3.2. Artificial neural networks 59

ANNs are widely used in water systems applications (Adamowski, 60

2008; Herrera et al., 2010; Romano and Kapelan, 2014). ANNs are 61

modeled after the human brain to simulate the mechanisms of human 62

neurons to collect, analyze, and transmit information through different 63

layers (Haykin, 2008). This study uses a feed forward neural network 64

with input, hidden, and output layers. The neurons of the input layer 65

correspond to each of the predictor variables. The output layer repre- 66

sents the response variable, which is the forecasted water demand, and 67

the hidden layer nodes apply the activation function, bias component, 68

and weights to transform the input data. Mathematically, the process 69

is described as: 70

𝑦𝑖 = 𝑓 (
𝑚
∑

𝑗=1
(𝑤𝑖𝑗𝑥𝑗 ) + 𝑏𝑖) (1) 71

where 𝑦𝑖 is the response variable; 𝑖 is the corresponding data point; 𝑓 72

represents the activation function, which typically corresponds to an 73

𝑆-shaped function; 𝑚 is the number of inputs; 𝑤𝑖𝑗 is the weight applied 74

to the 𝑗th input signal; 𝑥𝑗 is the 𝑗th input signal (predictor value); and 75

𝑏𝑖 represents the bias applied to the data at the 𝑖 data point. 76

A back-propagation algorithm is used to iteratively adjust the con- 77

nection among neurons, bias, and weights and improve the value of 78

the Mean Squared Error (MSE) that is calculated based on the modeled 79

and the observed values in the training process. ANN settings that 80

should be identified are the number of hidden layers and the number 81

of neurons within each layer. Hidden layers separate nonlinear data 82

to improve the predictive capabilities of the model. Each hidden layer 83

uses Eq. (1) in the learning process, and the weights and bias terms are 84

stored in the neurons of each hidden layer. The number of neurons in 85

the hidden layer generally corresponds to the double of the number of 86

predictors (Cutore et al., 2008). More predictors increase the number 87

of neurons and the complexity of an ANN model. 88

3.3.3. Support vector regression 89

SVR applies a transformation or kernel function to map a non- 90

linear data set into a linear function in a high dimensional feature 91

space (Haykin, 2008). Gaussian, linear, and polynomial functions can 92

be used within SVR to transform data. The mathematical formulation 93

of SVR is represented as (Smola and Scholkopf, 2004): 94

𝑓 (𝑥) = ⟨𝑤,𝜙(𝑥)⟩ + 𝑏 (2) 95

where 𝑓 (𝑥) is the response value that should fall within the bandwidth 96

defined by an allowable margin (𝜖) for all modeled data. The support 97

vectors define the feature space from −𝜖 to +𝜖. 𝜙 is the mapping 98

function to transform non-linear relations into linear functions. In 99

Eq. (2), ⟨𝑤,𝜙(𝑥)⟩ represents the dot product of the weight vector (w) 100

and the transformed input data set (𝜙(𝑥)), and 𝑏 is the bias applied to 101

the function approximation. A convex optimization problem is solved to 102

identify the smallest value of the error between modeled and observed 103

data. A cost or box constraint controls with a positive numeric value 104

the penalty for outputs that lie outside of the allowable margin (𝜖) 105

and helps to prevent overfitting. To apply SVR, the user should select 106

the type of transformation or kernel function (e.g., linear, polynomial 107

or Gaussian function), the value of the cost or box constraint, the 108

bandwidth margin (𝜖), and the kernel scale. Scaling the kernel function 109

plays an important role on the performance of SVR, as explained 110

by Williams et al. (2005). In this research, the kernel scale is included 111

as a setting to evaluate model performance. 112

4. Time clustering results 113

The K -means clustering algorithm was applied to cluster the average 114

hourly water demand based on the time of day. The number of clusters 115

was selected based on two criteria. First, a quantitative approach with 116

different numbers of clusters (2, 3, and 4) was applied and evaluated 117

http://www.mathworks.com
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using the Silhouette analysis as described in Section 3.2. Two clusters1

reported the highest Silhouette value (0.72), similar to results reported2

by Candelieri (2017), who also used two clusters to group water3

demand data. The use of two clusters also agrees with the emergent4

characteristics of daily water demands. That is, water consumption data5

typically follows a diurnal pattern in which two peak values occur:6

one peak in the morning around 7 AM and another peak in the early7

evening around 6 PM (Adamowski, 2008; Buchberger et al., 2017). The8

smart meter data set also demonstrates these peaks in the average daily9

demand in the morning and evening. During the weekdays, the first10

cluster starts at 3 AM and continues through the 9 AM hour (7 h). The11

peak consumption as shown in Fig. 2a occurs at 7 AM, with an average12

consumption of up to 15 gph between 7 AM and 8 AM on Wednesdays.13

For weekdays, the evening peak occurs at 8 PM, except for Thursday14

and Friday, where the peak consumption is at 5 pm. The second cluster15

begins at 10 AM and continues to 2 AM (17 h). On weekend days, the16

clusters and the peaks change. The morning peak consumption occurs17

at 10 AM. Cluster 1 begins at 2 AM and continues to 10 AM (9 h), and18

the duration of Cluster 2 is 15 h. Similarly, the night peak consumption19

during the weekends (as shown in Fig. 2b) occurs at 9 PM with a20

pronounced difference between Saturday and Sunday.21

5. Modeling results22

5.1. Experimental design23

The predictive model relies on several predictors to forecast water24

demand one hour ahead at the user level. A set of experiments was con-25

ducted to test the importance of these predictor variables, data clusters,26

and size of data sets on model performance. Three sets of predictor27

variables are created to forecast water demand, grouped as demand28

and seasonality (DS) variables, weather (W) variables, and property29

characteristics variables (CH) (Table 1). Four input data sets are created30

with data grouped in alternative sets of clusters (Table 2). The first31

input (all_data) includes all data points from a data set, without the32

use of any clustering. The second data set (wd_we) clusters data into33

two clusters, based on weekdays and weekend days. For the third and34

fourth data sets (hour and wd_we_hour), clusters were used that are35

based on the time of day and identified through the use of the K -means36

clustering algorithm (as shown in Section 4). Finally, two different data37

set sizes are explored. For individual data sets (Individual), one model38

is trained for each smart meter, where each Individual model has 876039

data points corresponding to the number of hours in 2017. For the40

group data set (Group), one model is trained using the entire data set41

of 85 smart meters, where the Group model has 744,600 data points,42

corresponding to the product of the number of hours in a year and the43

number of meters.44

This study evaluates the effects of smart metered data as the main45

predictor to forecast water demand (DS predictor). The inclusion of46

additional sets of predictors (DS ∪ W, DS ∪ CH, and DS ∪ W ∪47

CH), different clusters based on time of day and day of the week48

(all_data, wd_we, hour, wd_we_hour), and different size of the data sets49

(Individual, Group) are explored as they affect the capabilities of the50

forecasting model. Experiments for each combination of predictor set,51

cluster, and data set size are conducted (Table 3). For example, one52

model is developed to forecast water demand using only previously53

recorded consumption and seasonality data clustered by hour of the day54

during all days of the week for a single household. This combination55

corresponds to the settings DS, hour, Individual (Table 3). Based on56

the combination of predictors, clusters, and data set size, a total of57

24 experiments are created, and for each experiment, the three ML58

methods are applied and evaluated. Similar to the work presented59

by Walker et al. (2015), to initialize each model, the first week of water60

consumption is stored to use as predictors (pwsh in Table 1) of the61

forecasting model.62

Table 1
Predictor variable set, names, and definitions.

Predictor Predictor Predictor Units
set variable name variable definition

𝑝𝑤𝑠ℎ Water demand of gph
the previous week same hour

Demand and 𝑝𝑑𝑠ℎ Water demand of the gph
Seasonality previous day at the same hour
Variables 𝑎𝑣24ℎ𝑟 Average water demand gph

(DS) of the last 24-𝑝 hours (𝑝 = 4)
𝑡𝑖𝑚𝑒 Hour of the day (0 – 23) NA
𝑑𝑎𝑦 Day of the week (0 – 6) NA

𝑇 Temperature ◦F
𝐷𝑃 Dew point ◦F

Weather 𝐻 Humidity %
Variables (W) 𝑃 Hourly precipitation in.

𝐷𝑎𝑖𝑙𝑦𝑀𝑎𝑥𝑇 Max temperature of the previous day ◦F
𝐷𝑎𝑖𝑙𝑦𝑀𝑎𝑥𝐻 Max humidity of the previous day ◦F
𝑃𝑟𝑒𝑐𝑖𝑝𝑂𝑐𝑐𝑢 Occurrence of precipitation in NA

Previous 24-h period (0 = no, 1 = yes)

Property 𝐿𝐴𝑟𝑒𝑎 Property land area acre
Characteristic 𝑃𝑟𝑜𝑝𝑉 𝑎𝑙 Property value US $
Variables (CH) 𝐵𝐴𝑔𝑒 Building age year

𝐵𝐴𝑟𝑒𝑎 Building area ft2

The Root Mean Squared Error (RMSE) is used as a metric of per- 63

formance to evaluate the models. For Individual models, RMSE is 64

calculated for each of the 85 meters and for each experiment as shown 65

in Eq. (3): 66

𝑅𝑀𝑆𝐸𝑗 =

√

√

√

√

∑𝑁𝑗
𝑖=1 (𝐷𝑝𝑟𝑒𝑑𝑖 −𝐷𝑜𝑏𝑠𝑖 )

2

𝑁𝑗
(3) 67

where RMSE𝑗 is the RMSE for the 𝑗th meter for the training, validation, 68

or test data set, and there are 𝑁𝑗 data points associated with the 𝑗th 69

meter. 𝐷𝑝𝑟𝑒𝑑𝑖 is the 𝑖th demand predicted using a forecasting model, and 70

𝐷𝑜𝑏𝑠𝑖 is the 𝑖th demand observed. Note that different data points (𝐷𝑝𝑟𝑒𝑑𝑖 ) 71

may be predicted using different models at one meter if data were 72

clustered. Each model was trained 30 times for one meter to account 73

for stochasticity of the ML methods, and the average RMSE associated 74

with each meter is reported as the average across the 30 trials in gph. 75

To aggregate the RMSE value for comparison among the combination of 76

model settings, we report the median across the meters of the average 77

RMSE values. 78

For Group models, RMSE is evaluated across the entire data set as 79

shown in Eq. (4): 80

𝑅𝑀𝑆𝐸 =

√

∑𝑁
𝑖=1 (𝐷𝑝𝑟𝑒𝑑𝑖 −𝐷𝑜𝑏𝑠𝑖 )

2

𝑁
(4) 81

where RMSE is calculated for the training, validation, or test data set of 82

𝑁 data points across multiple meters. Again, different data points may 83

be predicted using different models if data were clustered. For Group 84

models, RMSE is the average performance across 30 trials. 85

The Spearman’s Rank-order Correlation (r𝑠) is used as a second met- 86

ric to define the strength of a monotonic relationship between observed 87

and predicted water demand. The Spearman’s rank correlation is used 88

instead of the Pearson’s correlation (R), because a linear relationship is 89

not apparent in this data, which is a zero-inflated date set (Myers and 90

Sirois, 2004). The Spearman’s rank correlation was not aggregated and 91

is reported in the Results section for each meter. 92

For each of the 24 experiments (Table 3), data are divided into 93

training, validation, and test sets for model developing. Training data 94

are used for the model to learn from the data. The validation data set is 95

used to identify the model parameters to best fit the modeled outputs 96

with the observed data while reducing overfitting. Finally, the model 97

is applied to a test data set to evaluate its performance (James et al., 98

2013). A random sampling without replacement algorithm was used 99

to divide the data set, ensuring that no overlapping occurs. Based on 100
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Fig. 2. Clusters identified for (a) weekdays and (b) weekends using the hourly average consumption of the set of meters.

Table 2
Clustered input.

Clusters Description Number of clusters

all_data All data points are included in the model (no clustering) 1
wd_we Data are clustered by days of the week 2
hour All data points are clustered by time of day 2
wd_we_hour Data are clustered by day of the week and time of day 4

Table 3
Combinations of settings for model input used for experiments.

Predictor variable set Clusters Size

DS

all_data
wd_we Individual
hour Group
wd_we_hour

DS ∪ W

all_data
wd_we Individual
hour Group
wd_we_hour

DS ∪ CH

all_data

Groupwd_we
hour
wd_we_hour

DS ∪ W ∪ CH

all_data

Groupwd_we
hour
wd_we_hour

previously conducted studies (Mouatadid and Adamowski, 2017; Guo1

et al., 2018), 80% of data were used for training, 10% for validation,2

and 10% for testing. Because of the noisiness in the water demand data,3

large training sets are needed to guide the learning procedure that is4

used to develop the model. Only a few settings are determined based on5

the performance for validation data, and a small data set is sufficient to6

make those selections. To evaluate the effects of random sampling, the7

data partition was re-initialized for each of the 30 trials. The approach8

leaves 10% of data out for each run, thus applying a hold-out cross9

validation technique to generalize the model.10

5.2. Machine learning settings analysis11

Preliminary analysis was explored to set algorithmic parameters for12

each ML approach. A set of 10 smart meters was randomly selected13

from the set of 85 meters. For this analysis, the predictor variable14

was set as DS; no clustering was applied (cluster: all_data); and Indi-15

vidual data sets were used to train one Individual model separately16

for each meter. A selection of settings were evaluated for each ML 17

method based on previously conducted work (Herrera et al., 2010; 18

Antunes et al., 2018). Each ML method was run 30 times, and the 19

average and standard deviation of the RMSE values for each meter were 20

calculated. The settings that produced the lowest average RMSE across 21

the 30 trials were used for the remainder of the study described in 22

this manuscript. Because the differences in the mean of RMSE values 23

reported in Tables 4 and 5 are small for each combination of settings, 24

the computational complexity (e.g., computational time) of executing 25

each method was also considered when selecting settings. 26

5.2.1. Random forest settings 27

The RF model was developed using the bootstrap aggregation tech- 28

nique (Breiman, 1996), and algorithmic settings include the number 29

of trees and the minimum number of observations per tree leaf. Three 30

values were evaluated for both parameters: 50, 100, and 200. The range 31

for evaluating the number of trees was based on research showing that 32

50 or fewer trees lead to accurate predictions (Antunes et al., 2018). 33

Another study demonstrates that using more than 200 trees increases 34

the execution time beyond practical limits (Villarin and Rodriguez- 35

Galiano, 2019). Within this range, the best performance was found for 36

100 trees and a leaf size of 50 (Table 4). 37

5.2.2. Artificial neural network settings 38

An ANN was applied to explore settings for the number of hidden 39

layers and the number of neurons per layer. Based on previous applica- 40

tions of ML methods for water demand (Herrera et al., 2010; Mouatadid 41

and Adamowski, 2017; Antunes et al., 2018), potential settings for 42

both parameters were identified as 1, 20, and 30, and a total of nine 43

combinations were analyzed. The best settings are selected based on 44

both model performance and computing time, as one hidden layer 45

and 20 neurons (Table 4). Previous predictive models have also used 46

relatively low numbers of neurons, as a characteristic of shallow neural 47

networks (Cutore et al., 2008; Herrera et al., 2010; Antunes et al., 48

2018). 49
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Table 4
Average RMSE (𝑅𝑀𝑆𝐸) and standard deviation (𝜎) reported for each combination of model settings for RF and ANN.

RF settings

Num of trees 50 50 50 100 100 100 200 200 200
Leaf size 50 100 200 50 100 200 50 100 200
𝑅𝑀𝑆𝐸 13.06 11.97 13.86 11.73 13.5 11.93 13.08 13.53 13.75
𝜎 2.45 1.63 1.85 1.38 1.42 1.62 0.86 1.99 2.67

ANN settings

Num of hidden layers 1 1 1 20 20 20 30 30 30
Num of neurons 1 20 30 1 20 30 1 20 30
𝑅𝑀𝑆𝐸 13.01 12.10 12.77 13.35 12.49 12.32 12.13 13.32 13.11
𝜎 1.38 2.24 1.63 1.11 2.18 1.66 0.80 0.81 2.69

Table 5
Average RMSE (𝑅𝑀𝑆𝐸) and standard deviation (𝜎) reported for each combination of model settings for SVR.

SVR settings

Box constraint 50 50 50 50 50 50 50 50 50
Kernel scale 10 10 10 50 50 50 100 100 100
𝜖 10 50 100 10 50 100 10 50 100
𝑅𝑀𝑆𝐸 14.70 26.65 23.46 16.28 27.25 23.25 16.75 27.68 23.51
𝜎 1.12 0.95 1.84 1.52 0.97 1.29 1.42 0.60 1.54

Box constraint 500 500 500 500 500 500 500 500 500
Kernel scale 10 10 10 50 50 50 100 100 100
𝜖 10 50 100 10 50 100 10 50 100
𝑅𝑀𝑆𝐸 15.51 25.97 23.77 16.77 26.68 23.15 15.95 25.93 23.61
𝜎 2.19 1.21 1.18 1.98 0.80 0.74 1.89 3.49 0.79

Box constraint 1000 1000 1000 1000 1000 1000 1000 1000 1000
Kernel scale 10 10 10 50 50 50 100 100 100
𝜖 10 50 100 10 50 100 10 50 100
𝑅𝑀𝑆𝐸 15.92 25.84 23.07 14.69 26.65 23.74 16.86 26.94 23.65
𝜎 1.34 0.79 0.93 1.05 1.18 1.86 1.50 0.70 1.29

5.2.3. Support vector regression settings1

The box constraint (𝑏𝑐) and bandwidth (𝜖) were evaluated based2

on procedures shown by Mouatadid and Adamowski (2017) and Fan3

et al. (2005). The effects of the kernel scale (𝑘𝑠) were also evaluated,4

based on previous work (Williams et al., 2005). The setting for the box5

constraint is based on the value of the hourly water demand, which6

ranges from 0 to 500 gph. The box constraint was tested at settings7

of 50, 500, and 1000. Similarly, the allowable margin, 𝜖, that defines8

the feature space was evaluated using values in the same order of9

magnitude as the reported hourly water demand, at 10, 50, and 100.10

The kernel scale was evaluated at values of 10, 50, and 100. This11

analysis includes a total of 27 combinations. The settings of 𝑏𝑐 = 50,12

𝑘𝑠 = 10, and 𝜖 = 10 generate the lowest RMSE value (Table 5). Many of13

the RMSE values reported by SVR were higher than those reported by14

RF and ANN. A Bayesian optimization algorithm (Gelbart et al., 2014)15

is available in the MATLAB toolbox and was applied to improve the16

performance of the SVR models. The Bayesian optimization subroutine17

is constrained by the size of the data set and could only be applied18

to train Individual models. The performance of the SVR that was found19

using the optimization procedure is approximately the same as the best20

values (shown in boldface) reported in Table 5.21

5.3. Models for individual meters22

The performance of the models used for the individual data sets is23

reported in this section. Each of the 85 smart meters is included in the24

analysis, and predictor variable sets DS and DS ∪ W and alternative25

settings for clustering are evaluated. The settings defined in Section 5.226

are applied to train the Individual models: ANN with one hidden layer27

and 20 neurons; RF with 100 trees and at least 50 observations per leaf;28

and SVR with box constraint equal to 50, kernel scale equal to 10, and29

𝜖 equal to 10.30

The median of the average RMSE for each meter is reported in31

Table 6. All results are reported for test data. For each of the ML32

methods, the median of the RMSE values decreases when data are33

clustered. The lowest error is reported as 9.5 gph by the RF model using34

Table 6
Median of the averages of RMSE (gph) reported for Individual models developed using
different ML methods, predictor sets, and clusters. Results are shown for test data.

Cluster DS DS ∪ W

RF ANN SVR RF ANN SVR

all_data 10.9 10.8 11.5 10.4 10.4 11.0
wd_we 10.7 10.6 11.5 10.3 10.3 11.0
hour 9.8 9.6 10.5 9.7 10.0 10.5
wd_we_hour 9.5 9.5 10.3 9.7 9.9 10.4

the DS predictor set and clustering by days and hours (wd_we_hour). 35

For these settings, the average RMSE reported for 85 meters ranges 36

from 4.3 gph to 80.1 gph. Out of the 85 meters, 28 meters report an 37

average RMSE value less than 10 gph, which is the resolution of the 38

data. Five meters report an average RMSE greater that 40 gph. For 39

these five meters, the demand pattern is erratic, with multiple changes 40

between low (e.g., 10 gph) and high (e.g., 100–500 gph) demands 41

during a 24-h period. Three of these five meters correspond to ‘‘other’’ 42

meters that are not associated with single family residential accounts, 43

which may explain a lack of pattern in the demand data. The Individual 44

models, however, do not perform poorly overall in simulating demands 45

at ‘‘other’’ meters based on RMSE values; the distributions of RMSE 46

values for single-family residential meters and other meters are similar. 47

The ANN models with the same settings (DS predictor set and 48

wd_we_hour cluster) reported similar RMSE values, with a median of 49

the averages of 9.5 gph. The highest error is reported by SVR. The 50

lowest RMSE value reported by the SVR models is 8% higher than the 51

RMSE found using the RF and ANN models and corresponds to the DS 52

predictor set with wd_we_hour cluster. 53

The longest computational time for training a model for one indi- 54

vidual meter was approximately 30 s using the all_data cluster and the 55

DS ∪ W predictor set, and the time required was similar for each of the 56

ML methods. A PC with an i7 processor and 16.0 GB of RAM was used 57

for the experiments. 58
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The Spearman’s rank correlation (r𝑠) is also shown for Individual1

models using the DS predictor set alone (Fig. 3), because this set2

performed best based on RMSE values, as shown above (Table 6). When3

the entire data set is used without clustering (all_data), the interquartile4

range of r𝑠 for RF spans from 0.36 to 0.44, and meters reporting an5

r𝑠 greater than 0.58 are considered as outliers. Similar to the results6

reported for RMSE values, RF reports the highest median of r𝑠 (0.42)7

for the DS predictor set and the all_data cluster. Based on r𝑠 values, the8

Individual models perform similarly for single-family residential meters9

and other meters.10

Models based on data that are clustered using the hours cluster11

shows less variability than other clusters (shown in the bottom row12

of Fig. 3). While clustering improved the RMSE value associated with13

models, clustering does not similarly increase the value of r𝑠. A similar14

set of subplots was generated for the DS ∪ W predictor variables and15

the results are similar to those reported in this section.16

5.4. Models for group data set17

The results of the ML models applied to the Group data set are18

presented in this section. These models use the entire data set of water19

demand reported by the 85 smart meters during 2017, and the same20

set of clusters were tested for developing models (Table 7).21

The lowest error is reported by RF, corresponding to the predictor22

variable set DS ∪ W ∪ CH and the wd_we_hour cluster. Using the23

all_data cluster, the RF models outperform ANN and SVR models across24

the different set of predictors. ANN models perform similar to RF25

models for the Days of week cluster, reporting an RMSE of 17.8 gph26

with the predictors DS ∪ CH and DS ∪ W, respectively. Using the27

hour cluster, the lowest error is found using RF and the DS ∪ W ∪28

CH predictor set, with an RMSE of 16.7 gph (4% above the lowest29

value). Unlike the models trained using the individual data set, the30

models trained using the group data set do not show performance that31

monotonically improves with clustering.32

The longest computational time for training the Group model varied33

among the ML methods. ANN training took thirty minutes, RF required34

four hours, and SVR required six hours, using the all_data cluster and35

the DS ∪ W ∪ CH predictor set for each method. The running time did36

not vary with the type of predictor set but it did vary with the type37

of cluster, where clusters reporting large data sets (e.g., all_data) took38

longer than small data sets (e.g., wd_we_hour). Similar to the results39

reported for the Individual models, the results presented in Tables 740

and 8 correspond to the test data set.41

For the Group models, the highest average value of the Spearman’s42

rank correlation is found when using the hour cluster (Table 8). The43

comparison between ML methods shows that RF report the highest44

r𝑠 values across the predictor sets and the clusters. The predictor45

set that produces the highest r𝑠 corresponded to DS. Similar to the46

Individual models, RF and SVR report the highest and lowest values47

of r𝑠, respectively. When the entire data set is used (all_data), r𝑠 ranges48

from 0.37 to 0.52. In this case, clustering decreases the value of the49

Spearman’s rank correlation. When the size of the data set is smallest50

(wd_we_hour), r𝑠 is reported at the lowest value (0.15). Including other51

variables in the predictor set does not improve r𝑠.52

5.5. Feature importance analysis53

Analysis of feature importance was conducted for the RF models.54

The predictor sets were DS ∪ W and DS ∪ W ∪ CH for the Individual55

and Group models, respectively, and the all_data cluster was used. The56

importance of each predictor was found using the tree-based iterative57

input selection algorithm (Galelli and Castelletti, 2013). Fig. 4a shows58

the most repeated results of feature importance among the 85 Individ-59

ual models. Hour of the day (𝑡𝑖𝑚𝑒), the average consumption of the60

previous 24 h (𝑎𝑣24ℎ𝑟), and day of the week (𝑑𝑎𝑦) are the three most61

important predictors. Fig. 4b shows the feature importance results of62

the Group model. The most important features in the Group model are 63

the consumption of the last week at the same hour (𝑝𝑤𝑠ℎ), followed by 64

the average consumption of the previous 24 h (𝑎𝑣24ℎ𝑟), and the hour of 65

the day (ℎ𝑜𝑢𝑟). New Individual and Group models were generated using 66

only the three most important predictors for each model type, and the 67

performance of the models in terms of RMSE and r𝑠 showed negligible 68

improvement. 69

5.6. Comparing the performance of individual and group models 70

The analysis conducted above explores the best settings to obtain 71

Individual and Group models. In this section, the Individual and Group 72

models are compared to provide recommendations about developing 73

predictive models for application in the field. Individual models are 74

trained to match data from a specific meter, and it is expected that 75

an Individual model could precisely model the behavior at that meter. 76

Group models, on the other hand, are developed using a larger data 77

set, which may improve the performance over all meters. In addition, 78

Group models should perform better for new meters that have not been 79

used to train the model. To compare the two approaches, we select 80

the best Individual and Group models, based on the experiments which 81

reported the highest r𝑠 values in Sections 5.3 and 5.4, respectively. 82

The experiments reporting the best performance for the Individual and 83

Group models correspond to RF, the DS predictor set, and the all_data 84

cluster. 85

First, the performance of the best Individual and best Group model 86

for one smart meter are shown as the observed and modeled water 87

demand of hourly consumption (Fig. 5). To provide a more detailed 88

visualization of the time series, Fig. 6 shows the same data during May 89

2017. The meter was selected randomly from the set of 85 meters. Both 90

models capture the trends in water demands over the 8760 h, but the 91

peak values are not accurately identified. The RMSE value reported for 92

the Individual model calculated over the 8760 h is 30 gph, and the 93

RMSE for the Group model is 38 gph. The Spearman’s rank correlation 94

(r𝑠) is 0.87 and 0.75 for the Individual and Group models, respectively. 95

The best Individual and best Group models were then compared 96

based on their capability to predict test data for each smart meter. 97

The test data set of each meter includes 876 values of water demand 98

values (the test data set is defined as 10% of the data). The cumulative 99

distribution plot (Fig. 7) shows that for the Individual and Group 100

models, approximately 30% of the meters report RMSE values below 101

12 gph. At the upper limit of the distribution of errors, 10% of the 102

meters report RMSE values above 25 gph. A two-sample Kolmogrov– 103

Smirnov hypothesis test (Marsaglia et al., 2003) is applied to the RMSE 104

of the models, and the test does not reject the null hypothesis that 105

the results from the Individual and Group models are from populations 106

with the same distribution at the 5% significance level, as shown in 107

Fig. 7. Therefore, the results obtained from the best Individual and 108

Group models in terms of RMSE are not significantly different. The r𝑠 109

coefficient is also calculated to compare the values of the Individual and 110

Group models for the test data. Fig. 8 shows that the Group model re- 111

ports a stronger monotonic relationship between observed and modeled 112

data than the Individual model. The two-sample Kolmogrov-Smirnov 113

hypothesis test confirms that the Group model generates higher 𝑟𝑠 114

values than the Individual model at the 5% significance level. 115

Five meters from the original set of 90 meters were used to test 116

the ability of the best Individual and Group models to predict demands 117

for new data sets. Similar to the 85 original meters, each of the five 118

meters reports 8760 hourly water demand values during 2017. The 119

RMSE value generated by both models ranges from 4.73 to 28 gph. 120

The Group model shows slightly lower errors than the Individual model 121

(Fig. 9). This is because the best Group model was trained using a larger 122

data set than the best Individual model, and the predictive capability 123

of the best Group model for new data sets is higher. The two-sample 124

Kolmogrov-Smirnov was applied to test the null hypothesis that RMSE 125

from the best Individual and Group models comes from population 126
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Table 7
Average RMSE (gph) of Group models using different ML methods, predictor sets, and clusters. Results are shown for test
data.

Cluster DS DS ∪ W DS ∪ CH DS ∪ W ∪ CH

RF ANN SVR RF ANN SVR RF ANN SVR RF ANN SVR

all_data 18.9 19.5 22.3 18.6 19.2 24.8 18.1 19.1 22.8 17.8 19.1 25.2
wd_we 18.6 19.1 22.4 17.8 18.3 24.5 16.8 17.8 21.7 18.2 18.9 25.6
hour 18.0 18.3 20.9 18.2 18.5 23.0 17.0 17.4 20.8 16.7 17.0 21.8
wd_we_hour 17.1 17.5 22.5 17.2 17.8 24.8 16.9 17.7 23.3 16.1 17.1 24.7

Table 8
Average Spearman’s rank correlation (r𝑠) values for Group models using different ML methods, predictor sets, and clusters.
Results are shown for test data.

Cluster DS DS ∪ W DS ∪ CH DS ∪ W ∪ CH

RF ANN SVR RF ANN SVR RF ANN SVR RF ANN SVR

all_data 0.52 0.47 0.37 0.48 0.45 0.42 0.50 0.45 0.43 0.49 0.45 0.39
wd_we 0.41 0.33 0.22 0.30 0.26 0.18 0.37 0.35 0.31 0.32 0.30 0.29
hour 0.53 0.49 0.26 0.48 0.44 0.41 0.51 0.48 0.45 0.51 0.48 0.46
wd_we_hour 0.32 0.30 0.15 0.32 0.30 0.16 0.29 0.25 0.24 0.29 0.27 0.25

Fig. 3. Spearman’s rank correlation (𝑟𝑠) values of Individual models using DS as a predictor set. Results are shown for test data.

Fig. 4. Feature importance of the predictors: (a) Individual model, (b) Group model.

with the same distribution, and the result indicates that the test does1

not reject the null hypothesis at the 5% significance level. For the r𝑠2

coefficient, the median value reported by the Individual and Group 3

models was 0.23 and 0.45, respectively. The two-sample test does not 4
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Fig. 5. Hourly demand reported at one meter using the (a) best Individual model and (b) the best Group model during 2017. Refer to the online version of the paper to view
the figure in color.

Fig. 6. Hourly demand reported at one meter using the (a) best Individual model and (b) the best Group model from May 5th to June 7th of 2017. Refer to the online version
of the paper to view the figure in color.

Fig. 7. Cumulative Distribution of RMSE values for the best Individual and Group
models applied to each smart meter. Results are shown for test data.

reject the null hypothesis that the r𝑠 values come from populations1

with the same distributions. These results demonstrate that there is no2

statistical difference in performance of the best Individual and Group3

models based on RMSE or r𝑠 at the 5% significance level for five new4

meters.5

6. Discussion6

This research tests the application of three ML methods for fore-7

casting water demands on an hourly basis at individual accounts.8

Forecasting demands at individual accounts one hour ahead can enable9

Fig. 8. Spearman’s rank correlation for the best Individual and Group models applied
to each smart meter. Results are shown for test data.

a utility to identify abnormal consumption when comparing modeled 10

and observed values with errors of ±10 gph. Forecasting water demand 11

with one-hour resolution data is a challenging modeling task, and 12

the precision of forecasting models may be improved through further 13

research; however, this margin of error may be sufficient to identify a 14

running toilet, for example, which can account for a loss of up to 140 15

gph (US EPA Water Sense). 16

To compare the performance of this work with previously conducted 17

research reported by Walker et al. (2015), we calculate the Pearson’s 18

correlation coefficient (R) for each of the 85 meters using the best 19

Group model. Our results show a range of R values from 0.25 to 20

0.80, which is a value higher than the range obtained by Walker 21

et al. (2015). They report R values ranging from to 0.30 to 0.65 for 22
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Fig. 9. Performance of the best Individual model and best Group model for 5 new
meters.

predicting hourly water demands at nine account-level meters. We1

focus on the use of r𝑠 in our analysis above to evaluate the monotonic2

relationship between observed and modeled data, instead of a linear3

relationship, which is represented by the calculation of R. Due to the4

volumetric resolution of the smart meters (10 gallons), the observed5

data set includes many zeros, and the MAPE cannot be calculated6

to compare these models with results reported by Candelieri (2017).7

Previous research that explored the use of SVR used only the time of8

day as a predictor (Candelieri et al., 2015), while this research explores9

alternative representations of previous water consumption, weather10

variables, and property characteristics as predictors. The methodology11

proposed here includes weekends in the analysis and explores the12

effect of demands that change during the weekend. Previous work in13

water demand using smart meters removed weekends from the data14

set to reduce noisiness in the data (McKenna et al., 2014). McKenna15

et al. (2014) do not report performance of their models for comparison16

purposes.17

The approach presented here does not rely on information about18

the type of user account (i.e., residential vs. non-residential), which19

gives the process general applicability. The models perform similarly20

well for single-family residential meters and other meters. The data set21

is limited in representing types of other meters, and further research22

can explore the effects of user types on model performance through23

additional data. Clustering the data set to differentiate weekdays and24

weekends was, in general, effective in finding models with reduced25

errors. The performance of the best Individual model for weekdays26

and weekends differs by only 1.8%, demonstrating that the model can27

perform similarly well for both weekdays and weekends with slightly28

better outcomes for weekdays, in terms of RMSE. The models that were29

developed in this research had limited capabilities to accurately predict30

demand peaks (Fig. 5) because most peaks do not follow a periodic or31

predictable pattern. The hourly volumetric resolution of the meters (1032

gallons) produces a zero-inflated time series, which creates difficulties33

in developing forecasting models. The number of meters allows us to34

test the capabilities of the models on new data sets using only five smart35

meters. Future work can use larger sets of smart meters to develop36

models. Training models for big data is computationally expensive,37

and optimization techniques were not applied when training the Group38

models due to the impracticability of the required computational time.39

ANN is one of the most used techniques in the urban water demand40

field, as shown in previous works (Adamowski, 2008; Romano and41

Kapelan, 2014; Walker et al., 2015). This research found that RF42

performs similar to or better than ANN, as suggested by Herrera et al.43

(2010). This study did not explore the effects of different types of44

normalization to train a neural network and only applied the Min–Max 45

scaling. Future work may explore the outcome of applying different 46

normalization techniques. 47

The application of RF presents advantages for a better understand- 48

ing of the model in terms of feature importance, as shown by Villarin 49

and Rodriguez-Galiano (2019). Computing time is also an important 50

criterion in the selection of models. RF, ANN, and SVR take around 51

30 s to train an Individual model using a PC with an i7 processor 52

and 16.0 GB of RAM. When working with a Group model, ANN takes 53

thirty minutes to train, whereas RF and SVR take four and six hours, 54

respectively. While RF generates models with higher correlations, the 55

time required for training models is much longer than the time required 56

for ANNs. 57

Deployment strategies vary among utilities in the temporal reso- 58

lution at which data are collected, which affects not only the cost of 59

maintaining an AMI system, but also the type of analysis and modeling 60

that can be conducted (McKenna et al., 2012). Hourly data, which may 61

be considered as the upper limit of high temporal resolution, is too 62

coarse to identify end-uses or support water quality modeling, but the 63

data can be analyzed to detect anomalies in post meter water consump- 64

tion (Britton et al., 2013) and to forecast water demands (Candelieri 65

et al., 2015). The models developed here can be applied to forecast 66

anomalies and send alerts to consumers. In the data set explored in this 67

research, water consumption is reported in increments of 10 gph. This 68

level of resolution can affect the performance of the ML methods ex- 69

plored here, which report continuous values as model output. Classifier 70

approaches may provide a better performance for application to this 71

data set. The precision that can be achieved using a classifier approach 72

will affect the time required to train the classifier, and exploration of 73

classifier methods was outside of the scope of the work presented here. 74

The ML methods described here are broadly applicable across smart 75

meter data sets of varying resolution and frequency. As technology for 76

power or battery life and communication improves, data sets collected 77

at smart meters may continue to increase in resolution and frequency, 78

which may increase the variability of demands. Trade-offs between 79

precision and predictive capabilities for increasingly high resolution 80

data sets should be explored in future research. 81

7. Conclusions 82

This research develops a set of models to forecast water demand 83

using data reported by smart meters installed at the user-level. The 84

models are developed to forecast water demand at the subsequent time 85

step. The input data used as predictors consist of lagged or previously 86

observed water demand, weather variables, and characteristics of the 87

households. Models were trained for individual meters and for the data 88

set as a whole. Individual and Group models were compared using 89

test data, which was randomly selected from the time series. Each 90

Individual model was trained specifically for a meter and was able to 91

continue to predict demands at that meter only marginally better than 92

the Group model for all the predictor variables and clusters analyzed. 93

When comparing the best Individual model with the best Group model 94

using the test data set of each smart meter, the results in terms of 95

RMSE are not different at the 5% significance level. However, for the 96

Group model, the correlation between modeled and observed data, as 97

measured by the Spearman’s rank correlation (r𝑠), is higher than the r𝑠 98

of the Individual model at the 5% significance level. A third comparison 99

was performed to test the best Individual model and the best Group 100

model for a new set of five meters. Based on that comparison, the Group 101

model performed marginally better than the Individual model. The 102

Group model used a much larger data set in training and was able to 103

predict demands at new meters better than an Individual model, which 104

was trained using a limited data set. However, when evaluating the 105

results using a two-sample Kolmogrov Smirnov test, the RMSE values 106

reported by Individual and Group models are not different at the 5% 107

significance level. 108
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Three ML methods were applied to forecast water demand based on1

regression: RFs, ANNs, and SVR. Despite fine-tuning the methods with2

similar combination of settings reported by previous works (Herrera3

et al., 2010; Mouatadid and Adamowski, 2017; Antunes et al., 2018),4

RF and ANN models outperformed SVR in all the applications. For5

the individual models, a Bayesian optimization of the hyperparameters6

was applied to SVR, and the RMSE values remained higher than those7

reported by RF and ANN models. This optimization technique was fea-8

sible only for the Individual models that have around 8700 data points.9

For the Group models (around 740,000 data points), the SVR settings10

were fixed, and the error followed the same pattern as the Individual11

models. This conclusion agrees with those reported by Brentan et al.12

(2018a), who applied SVR for water demand data.13

The inclusion of exogenous variables, such as weather and prop-14

erty characteristics, only marginally improves the model performance.15

Effectively, most of the information from these ancillary variables is16

already captured in the consumption data. For Individual models, the17

performance of demand-driven models is not affected by the inclusion18

of weather variables. The results are in accordance with previous works19

that did not find a significant correlation between short-term (hourly)20

water demand and weather variables. Group models showed a slight21

improvement in performance due to the inclusion of weather variables22

and characteristics of the households (building area, lot area, building23

age, and property value) in the array of predictors. While an improve-24

ment was observed with the inclusion of these exogenous variables,25

obtaining this information may be impractical. Characteristics of the26

households are obtained from census data or surveys, and this data may27

not be public to protect the privacy of constituents.28

Seasonality was analyzed by clustering data for weekdays and week-29

ends and based on the time of the day. The performance of both30

Individual and Group models improved by clustering data, where no31

clustering resulted in the highest errors, and the highest level of clus-32

tering resulted in the lowest errors. Differentiating weekdays from33

weekends and clustering for the time of the day resulted in the lowest34

error for the Individual models, whereas only clustering for weekdays35

and weekends reported the lowest error for the Group model. In sum-36

mary, clustering for seasonality improved Individual models more than37

Group models.38

The median RMSE value reported by the models varies from 9.5 to39

16 gph of water, giving some level of confidence for using models to40

alert customers of high water use anomalies that indicate potential post41

meter leaks when comparing actual and predicted consumption. The42

meter resolution fundamentally affects the performance of forecasting43

models. This variability is expected when working with noisy data,44

which is a characteristic of individual accounts at hourly temporal45

resolution. A higher resolution may lead to a better performance of46

forecasting models, and trade-offs may emerge in precision and vari-47

ability in the data set, which is in accordance with recent works (Comi-48

nola et al., 2018a). Future work can explore the use of classifiers for49

forecasting data reported in discrete intervals. Real-time forecasting50

methods have a critical role in smart water management and provide51

a tool for identifying leaks, encouraging conservation, and shaving52

peak demands. We anticipate that further research will demonstrate53

the utility of these models in enhancing the performance of water54

distribution infrastructure.55
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