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Abstract
The measurement and characterization of urbanization crucially depends upon defining
what counts as urban. The government of India estimates that only 31% of the
population is urban. We show that this is an artifact of the definition of urbanity and
an underestimate of the level of urbanization in India. We use a random forest-based
model to create a high-resolution (~ 100 m) population grid from district-level data
available from the Indian Census for 2001 and 2011, a novel application of such
methods to create temporally consistent population grids. We then apply a
community-detection clustering algorithm to construct urban agglomerations for the
entire country. Compared with the 2011 official statistics, we estimate 12% more of
urban population, but find fewer mid-size cities. We also identify urban agglomerations
that span jurisdictional boundaries across large portions of Kerala and the Gangetic
Plain.

Keywords Urbanization .Urbanagglomerations .Urban-ruraldelineation . India .Gridded
population data

Introduction

The global rate of urban transition has been immense in the past half century, with much of
that transition and associated population growth occurring across parts of Asia (Ellis and
Roberts 2015; Schneider et al. 2015). In 1960, India and China had similar urban population
percentages of 18% and 16%, respectively (World Bank 2018). Yet by 2016, according to
the World Bank statistics, while the Chinese urban population was at 54%, Indian urban
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population was at 33% suggesting very different developmental trajectories. In fact, the
World Bank, based on Census of India statistics, estimates that urban India is growing at a
declining rate (3.8% in the 1970s to 2.7% in the 1990s and 2000s, to 2.4% in the 2010s)
(World Bank 2018).Widely varying estimates of such rates can be found fromother sources.
United Nations figures rely on national statistics that themselves are generated by a wide
diversity of definitions of urban, leading to incomparable estimates of urban population and
urbanization rates across countries (Uchida and Nelson 2010). In addition, a long-running
debate exists in the literature about the relationship between urbanization of a country’s
population and its economic growth (Fay and Opal 2000; Henderson 2003; Spence et al.
2009). While higher levels of urbanization are observed in countries with higher per-capita
GDP, the rates of urbanization have little correlation to economic growth (Bloom et al. 2008;
Chen et al. 2014).

Yet much of this literature presumes that urbanization levels, along with the GDP, are
measured consistently and appropriately in different contexts (Satterthwaite 2007). Cross-
country consistency in urban definitions is necessary for the design and study of urban
policies that may vary by nation, such as the organization of public services or the allocation
of development finance towards meeting international development goals (OECD 2012).
For example, the Sustainable Development Goal 11, to “Make cities and human settlements
inclusive, safe, resilient and sustainable”, is associated with a number of indicators and
targets, the measured values of which can change substantially when applying different
definitions and delineations of cities (Klopp and Petretta 2017).

Definitional differences are not just a matter for comparative convenience; they have
both theoretical and policy implications. Studies of agglomeration economies and the
determinants of urban economic growth in India often use districts as units of analysis
due to a lack of availability of consistent boundaries for metropolitan areas, which
would be a more appropriate unit for such research questions (e.g., Desmet et al. 2015;
Duranton and Puga 2004; Ghani et al. 2016). This problem could potentially lead to
misleading conclusions in cross-country comparative work. For example, Chauvin
et al. (2017) conclude that India does not conform to spatial equilibrium, a central idea
in urban economics, in a comparative analysis of India, Brazil, China, and the USA. In
this study, districts were the unit of analysis for India, while units more analogous to
Metropolitan Statistical Areas in the other three countries were used. In contrast, Hasan
et al. (2017) find evidence of relatively low agglomeration economies in India based on
town and city-level data, but do not account for how such towns may be part of larger
metropolitan regions in their analysis.

From a governance standpoint, the delineation of urban areas has consequences for
the spatial distribution of infrastructure provision and related institutional arrangements.
Urban areas are seen as engines of economic development and infrastructural and
resources are concentrated on them (Indian Planning Commission 2011). Even so,
urban infrastructure investment is often assessed to be inadequate in India (Ahluwalia
et al. 2014). Underestimating the existence of dense population clusters only exacer-
bates this problem by limiting the political attention, governance reform, and finance
necessary to build and maintain appropriate levels of infrastructures such as intra-city
transportation, water, sanitation, and health in dense, yet officially rural areas. Areas
with high population density require qualitatively different types of infrastructure and
necessitate different institutions to govern them than lower-density areas, regardless of
whether they are administrated as urban or rural units (Rakodi and Lloyd-Jones 2002).
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In India, rapid urbanization that was expected to follow economic liberalization
policies starting in the 1990s was predicted to hollow out rural areas in favor of large
urban areas such as Bengaluru due to migration based on economic opportunity. In part,
these conclusions are drawn from undercounting urban areas and ignoring the large in
situ urbanization happening over time. Denis et al. (2012) argue that close to two-fifths
of the population live in urban settlements and 35% of the urbanites do live in small
towns below 100,000 in population. More importantly, the patterns of urban settlements
are different regionally, which also lead to regional developmental imbalances. For
example, the less developed states of West Bengal and Bihar have substantially more
dense settlements in the Denis et al. (2012) approach than the official estimates.
Accordingly, Kundu (2011) argues that when optimistic rural-urban migration predic-
tions were not realized, there were adverse consequences for urban livelihoods in
smaller towns, which contribute little to national productivity and command little
political attention. Indeed, initiatives such as the Jawaharal Nehru National Urban
Renewal Mission (JNNURM), one of the largest infrastructure programs ever under-
taken by the Government of India, allocated funds disproportionately to large urban
areas and may have caused stagnation in smaller towns and their surrounding rural
areas (Khan 2016).

Underbounding metropolitan areas has a related policy consequence when com-
bined with India’s federalist governance structure. The 73rd and 74th Constitutional
Amendments of 1993 devolved many planning and infrastructure provision responsi-
bilities from state to local governments, including urban local bodies (ULBs) for
officially urban areas and gram panchayats for officially rural areas. This devolution
in some circumstances allowed local communities to organize appropriate institutions
and infrastructure packages (Hutchings 2018). However, it also raises barriers for
coordination between communities in the provision of some public goods or the
management of shared common-pool resources. For example, the highly administra-
tively fragmented Kochi urban area saw many JNNURM projects delayed or applica-
tions rejected due to competing priorities and conflict between the Kochi Municipal
Corporation and surrounding ULBs and gram panchayats in the region (Kamath and
Zachariah 2015). Such phenomena highlight the potential gains to be had from more
regional planning structures that incorporate all neighboring clusters of high-density
jurisdictions (whether administered by ULB or panchayat) into related infrastructure
needs, as suggested by Mukhopadhyay et al. (2017).

The lack of a georeferenced and consistently delineated dataset also poses a problem
for studying urban change over time. Official estimates put change in Indian urban
population at 3.3% between 2001 and 2011, with 29.5% of this urban growth due to
reclassification of rural areas into Census Towns by the Census of India, rather than
expansion or densification of existing urban areas. This is higher than the growth in
urban population attributable to migration (Pradhan 2013). However, the significance
of these invisible urban villages, classified as urban by the Census but administered as
rural areas, is not readily apparent due to the unavailability of appropriate
georeferenced datasets. Since no fine-grained geographic and demographic data are
readily available, researchers have to look for clues in various census tables to locate
and measure the extent of such in situ urbanization. In this paper, we aim to make this
urbanization visible, so that appropriate political and economic institutions can be
fashioned to meet their governance needs.
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Background

There is no consistent definition of what constitutes an urban area around the world
(Buettner 2015; Cohen 2006; Satterthwaite 2007). Previous efforts to define consistent,
global definitions of urban area relied on daytime satellite images (Angel et al. 2011),
nighttime lights (Zhou et al. 2011), functional integration (OECD 2012), and population
density combined with travel times to the nearest large city (Uchida and Nelson 2010).
Others have followed a more hierarchical definition of classifying the urban areas based on
density, the proportion of the population living in different density clusters, population size,
and contiguity characteristics (Dijkstra and Poelman 2014).

However, different statistical agencies use different definitions and, thus the
measurement of urbanization and rates varies considerably from country to
country. Some countries do not have specific criteria to delineate urban regions,
instead preferring to list the urban areas with independent local governments.
While many countries use a minimum population size (200–50,000), a few use
minimum population density (~ 6.3 per ha) (Deuskar and Stewart 2016). India
is one of the 16 countries that use criteria of economic activity (dominance of
non-agricultural activity). India’s definition also has a gender dimension by
counting only the type of jobs held by male workers. In particular, the Census
of India defines urban areas as follows:

1. All places with a municipality, corporation, containment board, or notified town
area committee, etc. (referred to as Statutory Towns)

2. All other places which satisfy all of the following criteria (referred to as Census
Towns):

(a) A minimum population of 5000
(b) At least 75% of the male working population who work more than 6 months

of the year engaged in non-agricultural work
(c) A population density of at least 400 persons per square kilometer (4 persons

per ha).

Despite the detailed definition, there exists considerable debate about the urban
character of India and its evolution over time (Denis et al. 2012; Ganapati
2014; Sudhira and Gururaja 2012). For example, Denis et al. (2012) use
contiguous built-up areas in India (with some leapfrogging) and assign the
population of the Census-defined areas (not spatially demarcated). They then
use a 10,000 person population threshold to classify urbanity for Indian cities.
This definition and delineation allocate 100 million more people to urban areas
compared with the Census of India 2011 estimates.

A variation of these approaches can be found in the works of Balk (2009)
and McGranahan et al. (2007). Names and population estimates from the
National Statistical Organizations (NSO) are merged with geographic coordi-
nates for given administrative units from gazetteers. To define the urban
extents, unlike Denis et al. (2012) which uses the daytime impervious surface,
these approaches use nighttime lights, as a proxy for electrification, which is
itself a proxy for urban service provision. The population from the NSO/
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gazetteer points within each urban extent is assigned to the polygon. Using
urban extents from Balk (2009) to delineate large cities and including peri- and
suburban areas that are within a certain distance from these large cities, Uchida
and Nelson (2010) construct an agglomeration index as a characterization of the
metropolitan region. Uchida and Nelson estimate the urban population of India
to be between 42.9 and 51.9% compared with United Nation’s estimate of
27.7% (based on the Census of India 2000 estimates).

Each of these different definitions produces different urbanization estimates
as well as extents and locations of urban agglomerations, with its own set of
limitations. Using nighttime lights exclusively to define urban extent underes-
timates dense human settlements that are not yet electrified, or suffer from
intermittent electrification provision or from light blooms (Abrahams et al.
2018; Small et al. 2005). In contrast, using exclusively daytime satellite imag-
ery to delineate urban extents is constrained by weather conditions (e.g., cloud
cover) and trade-offs between spatial and spectral resolutions. The inability of
these methods to incorporate other types of data such as slope, hydrology,
climatic zones, and other features such as infrastructure that are associated with
human settlement patterns is critiqued by Uchida and Nelson (2010). Further-
more, relying on merging geographic coordinates to population data using place
names is susceptible to significant error due to mis/multiple spellings and
requires significant expert intervention. For example, about 1.8 million people
in India were not assigned to a location in the Denis et al. (2012) approach.
The contiguity criterion relied upon by Dijkstra and Poelman (2014) relies on a
low spatial resolution (of 1 km) to delineate urban areas, resulting in
fragmented and therefore small urban settlements, especially at the fringes of
a city. In a different but still spatially compromised way, Uchida and Nelson’s
agglomeration index merges spatially proximate but non-contiguous urban areas
into one metropolitan area, changing the boundaries that can be used. Since
their approach is to allow for cross-country comparisons of total urban popu-
lation, the precise location and boundaries are less important.

We provide a methodology that allows us to define and delineate urban areas
consistently across various jurisdictions. We propose a method called Metropol-
itan Agglomerations from Gridded Population Intensity Estimates (MAGPIE)
that draws from the abovementioned approaches to characterize urban regions
and their systems. We explicitly use density thresholds combined with size
thresholds in a consistent fashion to distinguish between urban and rural
settlements. We ignore the gender and economic activity thresholds that the
Indian Census uses, for generalizability purposes. With relatively little human
intervention, the proposed method produces an urban/rural delineation with an
associated urbanization estimate similar to that of Indiapolis in short order.
Because we rely upon gridded datasets, including remote sensing images, our
conclusions are not bounded by jurisdictional vagaries. The other methods
described in this section are also not limited by jurisdictions and allow for
comparisons. However, they are limited by resolution and underlying covariates
(Dijkstra and Poelman 2014) and imperfect separation of proximate urban areas
(Uchida and Nelson 2010). MAGPIE addresses some of these limitations.
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Method

Study area and data processing

Population counts were sourced from the Office of the Registrar General and
Census Commissioner in India and population counts were linked to GIS
administrative boundaries for each district (source: https://gadm.org/) creating
a spatially explicit representation of population distribution at the census unit
level. We do not include parts of Kashmir that do not have census data in our
study region. We then modeled gridded population at the district level (n = 594)
for the years 2001 and 2011, matching administrative boundaries for boundary
and data consistency purposes between years, with 2001 as the base year. Fixed
census units between years are important to enable a consistent estimation
process across time (Gaughan et al. 2016). In doing so, we reduce the potential
of under- or over-fitting the model due to heterogeneity in census unit size and
associated average population densities.

We matched all covariate data for both years based on either temporally
invariant or temporally explicit datasets. The land cover is based on GlobCover
data, which is derived from the ENVISAT satellite mission’s MERIS (Medium
Resolution Image Spectrometer) imagery. The land cover dataset has thirteen
categories: cultivated terrestrial lands, woody/trees, shrubs, herbaceous, other
terrestrial vegetation, aquatic vegetation, urban area, bare areas, water bodies,
rural settlement, industrial area, built area, and no data. We also used digital
elevation data and derived slope estimates from SRTM-based HydroSheds data
(Lehner, Verdin, & Jarvis, 2013) and the DMSP-OLS (v.4) lights at nighttime
series, obtained from NOAA’s National Geophysical Data Center(National Oce-
anic and Atmospheric Administration, n.d.). In addition, the Global Human
Settlement Layer (GDAL/OGR Contributors, 2–19) with a spatial resolution of
38 m was collected from the European Commission Joint Research Centre (2014
beta version) for the years’ most coincident with 2001 and 2011. To best use the
urban extent information, we created a distance-to-built-edge covariate, where
distances inside the built land cover class boundary were negative and distances
outside the edge were positive. We also used the WorldClim/BioClim 1950–2000
mean annual precipitation (BIO12) and mean annual temperature (BIO1) esti-
mates (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). In addition to land
cover, settlement, and associated raster datasets, we included geospatial data that
was correlated with human population presence on the landscape, such as
protected area delineations (UNEP-WCMC, 2010), networks of roads, and wa-
terways; large water bodies; and infrastructure-related features and settlement or
populated locations from open street map 2017. All these covariate data
employed in the modeling process are summarized in Table 1. These covariates
were all summarized to the district polygon level as the average value within
each polygon. All datasets were resampled using nearest neighbor to match the
same resolution to a square pixel resolution of 8.33 × 10−4 degrees
(approximately 100 m at the equator) and projected into UTM 44N projection
prior to analysis. All covariates were prepared in ArcGIS (ESRI 2016) and
Python programming language (version 2.7) (Python Software Foundation 2013).
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Gridded population intensity estimates

We generated gridded population intensity estimates (GPIE) using the methods de-
scribed by Stevens et al. (2015) to disaggregate the census population for 2001 and
2011. We used grid cells with a resolution of 3 arc sec (approximately 100 m at the
equator). We used a random forest (RF) statistical model (Breiman 2001) to generate a
population prediction density layer, in conjunction with a dasymetric redistribution of
population counts (Stevens et al. 2015) to produce final gridded population outputs at
approximately 100 × 100 m grid cells. For the Indian subcontinent, this represents
approximately 395 million pixels of land that population is allocated to. The RF
statistical model provides a non-parametric platform coupled with an ensemble
machine-learning technique for classification or prediction purposes (Breiman 2001).
The RF method relies on the use of bagging and random selection of covariates across
numerous classification and regression trees (Lung et al. 2013).

For our purposes, we use census counts at the district level and covariate aggregation
values for each census unit to create a RF model to predict log population density
(Lung et al. 2013). In this method, the dasymetric redistribution weight is produced as a
function of different covariates representing the individual covariates such as lights-at-
night, slope, elevation, and proximity to land-use types. The resulting RF is used to
predict a country-wide, pixel-level map of log population densities that provides a
weighting layer for a dasymetric redistribution scheme (Mennis 2003) to redistribute
population counts within each unit to the target cells (Stevens et al. 2015). Figure 1
portrays the schematic process involved in creating the dasymetric weighting layer.
This dasymetric disaggregation then unevenly allocates the district-level population to

Table 1 Covariates used in gridded population modeling process

Variable name(s) Source and nominal resolution

District Census Population, 2001, 2011 Open Government Data (OGD) Platform India, district level

Temporally explicit covariates

Land Cover, 2000, 2010 GlobCover, 300 m

Global Human Settlement Layer, 2000, 2012 ECJRC, 38 m (Pesaresi et al., 2013)

Lights at night, 2001, 2011 DMSP-OLS-derived (National Oceanic and
Atmospheric Administration, n.d.)

Common covariates

Mean temperature, 1950–2000 WorldClim/BioClim (BIO1) (Hijmans et al., 2005)

Mean precipitation, 1950–2000 WorldClim/BioClim (BIO12) (Hijmans et al., 2005)

Sanctuaries, National parks, Game Reserves,
World Heritage Sites

World Database on Protected Areas September, 2012,
UNEP (IUCN, UNEP-WCMC, 2010)

Elevation USGS HydroSHEDS (Lehner et al., 2013)

Derived Slope USGS HydroSHEDS (Lehner et al., 2013)

Distance to infrastructures Open Street Map, 2017–05

Distance to places Open Street Map, 2017–05

Distance to road networks Open Street Map, 2017–05

Distance to waterbodies Open Street Map, 2017–05
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underlying raster respecting the protected and uninhabitable areas. The result of this
process is a 100 × 100 m grid cell (1 ha) resolution population map for 2001 and 2011.
RF model fitting at the administrative unit level and prediction at the grid cell level
were both performed in the R statistical environment (R Development Core Team,
2017) using the randomForest package (Liaw and Wiener 2002). Predicted range of
population datasets from random forest models is sensitive to the scale of the training
dataset and using a coarse dataset could lead to a small range in dasymetric weighting
surface. As a result, with coarse census data, a less heterogeneous population density
will be observed with fewer extremes. We also note a disconnection between the level
of support between the model estimated for administrative units and the scale of the
predictions from the model used to disaggregate census data. However, while no
assumptions are placed on the linearity or interactions present in relating ancillary data
to population density (a feature of random forest modeling), we assume that the process
resulting in those estimated associations at an aggregate level are, on the whole,
representative of the process relating covariates to population density at the finer,
gridded scale. In the absence of data on population densities at the finer scale of
interest, of which we have none to estimate the model with or validate against across
time, output based on this assumption has consistently shown to perform better than
less complex or less informed disaggregation techniques (Stevens et al. 2015; Gaughan
et al. 2016; Nieves, et al. 2017). Despite the “ecological fallacy” inherent to this
change-of-support (Gelfland, et al. 2001; Holt, et al. 1996) and likely biased outcome
at the pixel level, the approach still manages to achieve comparable results to bottom-
up modeling using fine-scale model estimates (e.g., Engstrom, et al. 2019).

Metropolitan agglomerations

We define urban areas in metropolitan agglomerations (MA) using a three step
process (see Fig. 2). Based on the GPIE, we first select all cells that are outputs that
are above a certain density threshold. We use 7.5 persons per ha as a density
threshold and experiment with 5 and 10 persons per ha to test the sensitivity of
this threshold. Note that all of these are above the 4 and 3 person per ha thresholds
used by Census of India and Dijkstra and Poelman (2014), respectively.1 We use
contiguity of these densely populated cells to construct clusters of urbanized areas
using a region grouping algorithm from Geospatial Data Abstraction Library
(GDAL/OGR contributors 2019). Holes within each of the polygons are removed.
In other words, unpopulated areas that are completely circled by urban areas such as

Fig. 1 Schematic representation of the dasymetric gridded population modeling process

1 Dijkstra and Poleman (2014) also use 15 persons per ha to define high-density urban cluster for Europe.
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hills, parks, and lakes would be considered to be within the boundary of the urban
area. This removal of holes adds 9% more to the urbanized area than otherwise and
only has marginal effect on the urban population estimates (~ 2.8%). Because of
noise associated with GPIE, we removed areas that are below 2 ha area from
consideration. The 2 ha are approximately two contiguous cells that are not adjacent
to any other selected cells. We experimented with different thresholds and selected
2 ha as the areal threshold that produces urban population estimates less than 90%.

Fig. 2 Various stages of defining the urban area boundary in MAGPIE. a Input population intensity estimates.
b Urban areas based on density threshold. c Removal of holes and polygonization based on contiguity
constraint. d Construction of graph based on distance threshold to account for non-contiguous polygons. e
Construction of clusters based on eigenvector community-detection technique
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However, contiguity is an insufficient criterion to delineate metropolitan areas, as
they are usually fragmented at the edges. To determine how these constellations of
fragments relate to one another and to larger urban areas, we turn to the community-
detection algorithms borrowed from network science (Comber et al. 2012; He et al.
2019). We then construct a graph from these polygons with each polygon as a node
with the vertex set V(G). Two nodes are connected with an edge if the distance between
their boundaries is below a distance threshold of 150 m. This is a distance that is
roughly the diagonal of the cell and approximates queen contiguity criterion with one
cell skipped over. We then find communities within the components of the graph G
using the leading non-negative eigenvector of the modularity matrix of the graph
(Newman, 2006). Community-detection techniques allow us to partition the vertices
of the graph into groups, where the connections within the groups are denser than the
connections between groups. The intuition is that if multiple urban clusters are close to
one another, they should be treated a coherent entity. This also allows us to avoid
identifying tendril-or dumbbell-like urban patterns, unless they are explicitly contigu-
ous. We then combine the polygons represented by the vertices that are part of a
community into a single metropolitan agglomeration. This analysis is done using raster
(Hijmans 2017), spdep (Bivand and Piras 2015), and igraph (Csardi and Nepusz 2006)
packages in R.

Results

In order to measure the prediction error of the random forest model, we estimate the
out-of-bag (OOB) error from 37% samples with 500 trees. The OOB is an error
estimate calculated during the RF model fitting and is based on averaging all mean
squared errors. It provides a robust and unbiased measurement of the prediction
accuracy of the RF model (Breiman 2001) and informs the accuracy of the final
gridded population datasets produced using the RF-based approach (Gaughan et al.
2016; Stevens et al. 2015). The pseudo-r-square value for training model based on
mean population density at district scale is 0.88 and 0.87 for 2001 and 2011, respec-
tively. The median values of predicted population counts are 1.4 to 1.6 persons per
pixels (see Fig. 3). To assess the final accuracy of the GPIE estimates, we matched 500
randomly selected village/town boundaries (level 4 administrative units, available from
Bhuvan, a high-resolution web mapping service focused on the region of India
(National Remote Sensing Center 2019)) with the census population counts using
name of the village/town and district as an identifier. We aggregated the GPIE results
to the village/town boundaries after correcting for boundary errors and projection
issues. The correlation coefficient is 0.86 between census counts and GPIE results
providing confidence in the spatial representation of gridded population outputs.

We report our estimates for metropolitan agglomerations with each of the three
density thresholds (5, 7.5, and 10 persons per hectare) with a 150-m distance
threshold.2 We compare our results with those of three other urbanization esti-
mates; the Census of India, Indiapolis (Denis et al. 2012) and GHS-POP/

2 We tested the sensitivity of the distance threshold by using 200 and 250 m. They resulted in much larger
contiguous urban areas and therefore are not reported here.
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GHS-SMOD. We produce the GHS-POP/GHS-SMOD estimate by aggregating the
2015 estimate of the 2019 version of the Global Human Settlement population
grid (GHS-POP) (Schiavina et al. 2019) with the urban settlements of the 2019
version of the GHS settlement model grid (GHS-SMOD) (Pesaresi et al. 2019). To
create the settlement clusters from GHS-SMOD, we combine raster cells classified
to be in the “urban domain” that are contiguous at the edges (and not only the
corners) into polygons representing discrete contiguous settlements. It should be
noted that these are the best available estimates at the time of publication and that
they are subject to continual updates.

We divide our results into the following sections: (1) characterization of the location
and type of urbanization for 2011, (2) comparison of our method with the Census of
India, Indiapolis and GHS-POP/GHS-SMOD estimates of urbanization and urban
hierarchy for 2011; and (3) comparison of estimates for urbanization rates between
2001 and 2011 with the Census and Indiapolis.

Patterns of urban settlements in 2011

Figure 4 shows the spatial extent of urbanization and the sensitivity to the
minimum density thresholds. Lowering the density threshold results in larger
solitary cities and the coalescence of cities into larger and more populous agglom-
erations (see Fig. 4a, b). Regions where estimated urbanized areas greatly increase

Fig. 3 Gridded Population Intensity Estimates for India (2011). Maximum value is restricted to 25 for
visualization purposes
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in size when the density threshold changes generally indicate large areas of a
relatively uniform population density in between denser urban centers. These
regions are easily identifiable as the large contiguous megalopolises with greater
than 40 million people including the extended agglomeration of Delhi and western
Uttar Pradesh, the Gangetic plain through eastern Uttar Pradesh and Bihar (labeled
for urban centers Patna, Varanasi, and Gorakhpur in the top row of Fig. 5), and
most of West Bengal (labeled Kolkata in Fig. 5). Kerala exhibits a similar pattern
of contiguous medium-density settlement, but without the numerous dense urban
centers in between that would push the total population above 40 million. These
regions (labeled urban centers Kozhikode and Thiruvananthapuram in Fig. 5) have
comparable population sizes to large cities like Mumbai and Bangalore but much
less dense, suggesting coalescent urbanization that knits together many villages,
towns, and cities.

Outside of these regions, the pattern of urbanization is different. The relative
lack of change in the size of urban areas of at least 100,000 in population
when the density thresholds are changed indicates that populations are more
highly concentrated in urban areas. Estimates of the urban population in these
regions rise as the density threshold falls, but this is due to a combination of

Population Category
<20k Town

20k-100k City

100k-1 million Class 1 Urban Area

Million+ City

10-40 million Megacity

>40 million Megalopolis

sretemoliK570 150 300

0 1,500 3,000 sretemoliK057

)c()b()a(

Fig. 4 Spatial extent of urbanization according to MAGPIE. Top row for the entire map of India, bottom row
inset for the detail of smaller areas. Estimated with a minimum density threshold of (a) 5 person/ha., (b) 7.5
person/ha. (c), and 10 person/ha
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two reasons: (1) higher numbers of distinct settlements are counted as urban
and (2) the periphery of urban areas is now included within the boundary of an
existing urban area. An example of this kind of urbanization pattern is through-
out the state of Maharashtra, where areas of high population density are
concentrated around Mumbai, Pune, Nagpur, and several cities between
100,000 and 1000,000 in population and new agglomerations are not created
by lowering the density threshold (see insets in bottom row in Fig. 4). Metro-
politan agglomerations such as Chennai, Bangalore, and Hyderabad also follow
this pattern, being the densest population centers in India, as they are not
connected to other large cities and so are not as populous as the megalopolises
(see third row of Fig. 5). Another way to understand the pattern of urbanization
is to see how the density thresholds affect the proportion of people that are
considered urban in each state. Uttar Pradesh is dramatically affected by the
threshold, suggesting a 45-percentage point difference; changing the density
threshold from 5 to 10 decreases the urban population by 45 percentage points
(see Fig. 6). A similar, but less dramatic, effect is observed in Bihar, Assam,
and West Bengal. In contrast, due to high densities, many union territories and
the Delhi region are not affected by the threshold.
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Fig. 5 Relationships among MAGPIE estimates of population and population density in India in 2011
(7.5 pp./ha threshold). Vertical lines represent individual urban agglomerations, positioned on the x-axis
according to population density (population per hectare) and on the y-axis according to population size
category. Red diamonds represent particularly high- or low-density urban agglomerations of interest
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Comparison with other estimates

Different methods produce vastly different estimates of urbanization in India (see
Table 2). The categories in Table 2 are based on various size thresholds used by the
Census of India in publications of the populations of urban areas (Registrar General and
Census Commissioner of India 2011). Urban areas with less than 5000 people do not
meet the qualifications to be counted as a census towns, so any tabulated are statutory
towns in the Indian census and there is no published count of the ones that are not
considered part of larger urban areas. The next category is urban areas with between
5000 and 20,000 people but there is similarly no specific tabulation of them. “Urban
agglomerations” are composed of combinations of towns, cities, and “out growths”
with a combined population of at least 20,000 in 2001. “Class 1 urban agglomerations”
have at least 100,000 people, “million plus cities” at least 1 million, and “megacities” at
least 10 million people. Thus, based on these thresholds, we tabulate counts and
populations of urban areas based on population size breaks of 5000; 20,000;
100,000; 1 million; and 10 million. Our methods in some cases produced large
agglomerations with more than twice the population of what are normally considered
India’s largest cities of Delhi, Mumbai, and Kolkata. We categorize these agglomera-
tions, with populations greater than 40 million, as “megalopolises.”

The 2019 GHS-POP/GHS-SMOD estimates, based on the method of Dijkstra and
Poelman (2014), place urbanization (in 2015) in India at 77%, which is much higher
than MAGPIE, Indiapolis, and the Census of India. This is likely because the under-
lying dasymetric population disaggregation only uses one binary covariate, the GHSL
built-up area indicator (Corbane et al. 2018; Florczyk et al. 2019). Combined with the
relatively coarse 1-km spatial resolution, the effect is to consider a large proportion of
square kilometer grid cells in India with any built-up area as urban. We find this to be
an implausibly high estimate of urbanization in India.
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MAGPIE tends to produce different urban hierarchies than the Census as well as the
Indiapolis project in three respects. First, our method produces large numbers of
isolated, small urban areas with less than 5000 people, although all of these towns
together only amount to 5–8 million people. These settlements are generally not
considered urban by the Census and are categorically not considered urban by
Indiapolis.

Second, MAGPIE tends to consider large areas of relatively high population density
(though not necessarily concentrated around traditional core cities) as urban. This
results in the reallocation of the Indian population from small towns as well as areas
the Census considers rural into larger urban areas with more than 10 million people. For
instance, our most conservative threshold combination of 10 persons/ha with a distance
threshold between settlements of 150 m produces two large urban agglomerations of
roughly 30 million people each in Bihar and considers almost all of the coast of the
state of Kerala as one contiguous agglomeration with over 40 million people. Our
method’s characterization of urbanization in Kerala is similar to that of Indiapolis.

Third, our method tends to agglomerate populous municipalities with dense networks of
smaller settlements in between them into larger agglomerations, reducing the number of
mid-size cities and increasing the number of megacities relative to the census. For instance,
our method folds many areas that the Census and Indiapolis consider cities with populations
between 100,000 and 10 million into larger megacities, while combining almost all of Uttar
Pradesh, Bihar, and West Bengal into megalopolises.

MAGPIE also results in different urbanization estimates at the state level. Figure 7
summarizes the urbanization rates of the Indian states as calculated by (a) the Census of
India, (b) Indiapolis, and (c) MAGPIE estimates with 7.5 persons/ha threshold. MAG-
PIE generally estimates lower urbanization rates for each state than the Census. The
major exceptions are Kerala, Bihar, Uttar Pradesh, and West Bengal, where we estimate
much higher urbanization rates than the Census. We characterize urbanization in Kerala
similarly to Indiapolis, although we estimate a much higher degree of urbanization in
Bihar, Uttar Pradesh, and West Bengal than does Indiapolis. By contrast, MAGPIE
tends to estimate lower urbanization than the Census or Indiapolis in mountainous
states such as Mizoram, Nagaland, and Sikkim, as well as in Gujarat and Maharashtra.
However, since Bihar, Uttar Pradesh, and West Bengal are very populous states, our
estimates of higher urbanization in these states outweigh our lower estimates in the
other states to create a higher estimate of national urbanization.

The overall effect is a higher proportion of the Indian population being urban than in
the official figures. For 2011, at the 7.5 pp./ha threshold, we estimate overall urbani-
zation at 43% (compared with the Census estimate of 31%). This amounts to a
difference of 140 million people from the Census. This also suggests a much different
urban hierarchy than the Census implies, with much larger proportions of the Indian
population allocated into urban areas with greater than 10 million people and relatively
fewer people in cities with less than 100,000 people.

Temporal change: urbanization between 2001 and 2011

We estimate a change of 4.7 percentage points in the proportion of urban population in
India between 2001 and 2011 (see Table 3). This is not significantly different from
other estimates such as Census (3.3 points) and Indiapolis (2.4 points). However, there
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Table 3 Comparison of estimates of change in urbanization between 2001 and 2011 at the state level, as
estimated by the Census of India, Indiapolis, and MAGPIE

Census Indiapolis MAGPIE (7.5 persons/
ha)

State 2001 2011 % point
difference
(%)

2001 2011 % -point
difference
(%)

2001 2011 % -point
difference
(%)

Andaman & Nicobar
Islands

33% 38% 5% 30% 33% 3% 15% 16% 1%

Andhra Pradesh 24% 30% 5% 36% 41% 5% 23% 26% 3%

Arunachal Pradesh 21% 23% 2% 16% 16% 0% 0% 0% 0%

Assam 13% 14% 1% 21% 22% 0% 16% 24% 8%

Bihar 10% 11% 1% 31% 36% 5% 63% 74% 11%

Chandigarh 90% 97% 7% 99% 99% − 1% 100% 100% 0%

Chhattisgarh 20% 23% 3% 21% 21% − -1% 18% 20% 2%

Dadra and Nagar
Haveli

23% 47% 24% 44% 53% 9% 12% 26% 14%

Daman and Diu 36% 75% 39% 87% 95% 8% 121% 115% − -6%

Delhi 93% 98% 4% 97% 97% 1% 100% 100% 0%

Goa 50% 62% 12% 57% 57% 1% 40% 45% 6%

Gujarat 37% 43% 5% 43% 53% 10% 30% 33% 3%

Haryana 29% 35% 6% 38% 43% 5% 37% 39% 2%

Himachal Pradesh 10% 10% 0% 8% 9% 0% 8% 7% −1

Jammu and Kashmir 25% 27% 3% 31% 31% − 1% 23% 31% 7%

Jharkhand 22% 24% 2% 25% 25% 0% 28% 34% 5%

Karnataka 34% 39% 5% 38% 43% 4% 26% 31% 4%

Kerala 26%r 48% 22% 97% 96% − 1% 77% 78% 1%

Lakshadweep 44% 78% 34% 34% 51% 17% 84% 93% 9%

Madhya Pradesh 26% 28% 1% 26% 27% 1% 17% 18% 1%

Maharashtra 42% 45% 3% 48% 51% 3% 35% 36% 1%

Manipur 25% 29% 4% 47% 52% 5% 24% 27% 3%

Meghalaya 20% 20% 0% 13% 5% − 9% 11% 12% 0%

Mizoram 50% 52% 2% 45% 47% 2% 7% 6% − 2%

Nagaland 17% 29% 12% 25% 29% 5% 10% 11% 1%

Orissa 15% 17% 2% 16% 17% 1% 20% 23% 4%

Puducherry 67% 68% 2% 74% 74% 0% 90% 93% 2%

Punjab 34% 37% 4% 37% 40% 2% 34% 32% − -1%

Rajasthan 23% 25% 1% 26% 29% 3% 17% 18% 0%

Sikkim 11% 25% 14% 13% 18% 5% 3% 3% 0%

Tamil Nadu 44% 48% 4% 50% 53% 3% 40% 44% 4%

Telangana 32% 39% 7% 45% 52% 7% 30% 31% 1%

Tripura 17% 26% 9% 64% 63% − 1% 21% 22% 1%

Uttar Pradesh 21% 22% 1% 25% 25% 1% 45% 55% 10%

Uttarakhand 26% 30% 5% 31% 35% 4% 23% 28% 5%

West Bengal 28% 32% 4% 47% 48% 1% 62% 69% 7%

India 28% 31% 3% 37% 39% 2% 38% 43% 5%

142 Population and Environment (2019) 41:126 150–



is significant heterogeneity in estimates of rates of urbanization at the scale of the state.
While the Census estimates significant urbanization in the south India, it undercounts
the rate of urbanization in Gujarat relative to Indiapolis (see Fig. 8). According to our
estimates, while southern Indian states have experienced higher urbanization rates, they
are dwarfed by the urbanization rates in Uttar Pradesh, Bihar, and West Bengal. While
these states have not traditionally been at the forefront of urbanization, they seem to be
densifying quite rapidly in a way that is not being captured by the Census estimates.
However, unlike Indiapolis, we do not estimate a marginal decline in the urbanization
in the heavily urbanized state of Kerala (see Fig. 8 and Table 3).

The rapid urbanization in Uttar Pradesh, Bihar, and West Bengal is characterized by
continuing population growth in small settlements. As these settlements grew in population
between 2001 and 2011, they are more likely to pass the population density threshold set by
MAGPIE.MAGPIE does not use a threshold on agricultural employment share (as does the
Census) or settlement population size (as does Indiapolis). Thus, MAGPIE categorically
classifies small, dense settlements as urban. So, larger shares of the population in areas with
this development pattern are considered urbanizing as more settlements pass the density
threshold and as these relatively small settlements experience population growth. In contrast,
the Census measures rapid urbanization in Kerala, because it considered only 26% of the
population urban in 2001. Both Indiapolis andMAGPIE considered themajority of Kerala’s
land area and population to be urbanized in 2001 already, so there is less potential for further
urbanization.

Discussion

We estimate that in 2011, India’s population was 43% urban, or 140 million more urban
residents than estimated by the Census of India. MAGPIE places 18% of the total
population and 48% of the urban population into very large, often polycentric urban
agglomerations of greater than 10 million people while the Census of India considers

(a) (b) (c)

0 1,500 3,000 sretemoliK057

Urban Population %, 2011
0-10 10-25 25-40 40-60 60-75 75-100 No Data

Fig. 7 Comparison of the 2011 urbanization level by state. a Census of India. b Indiapolis. c MAGPIE (7.5
persons/ha)
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the bulk of the urban population to be in mid-sized cities with populations between
100,000 and 1000,000. While the Census’ definition may characterize how these urban
populations are administered, our method implies a much more spatially interconnected
urban system, as well as divergent urbanization processes taking place in different
regions of India. Like previous efforts to estimate India’s urbanization without refer-
ence to gender and employment categories (Denis et al. 2012), the implications are that
substantial investment in services to support life in dense settlements will be required,
whether or not the official figures classify populations living within networks of
proximate, small and dense settlements as urban or rural. This problem is only partially
addressed in Indian development planning. Perhaps the most visible related policy
initiative is the National Rurban Mission begun in 2016, which aims to identify 300
“rurban” clusters of 20 villages each across the country and target each with a variety of
local workforce training activities and urban amenities such as water, sanitation, public
transport, and street lighting. However, much of the official documentation about the
National Rurban Mission implies that the initiative is designed to facilitate the
urbanization-in-place of villages, while many of the selected clusters are in fact
spatially proximate to large urban agglomerations and could be considered peri-urban
or suburban (Singh and Rahman 2018). Similarly, many of the state nodal development
authorities in West Bengal, Bihar, and Uttar Pradesh, to the extent that they address
development in gram panchayats, are generally targeted towards the fringes of urban
agglomerations rather than networks of villages undergoing in situ densification inde-
pendent of a large city. Some major exceptions include the Gangasagar Bakkhali
Development Authority in West Bengal that covers much of the Hooghly River estuary
(Gangasagar Bakhali Development Authority 2019); the Patharchapuri, Barkreswar,
Furfura Sharif, and Tarapith Development Authorities in West Bengal covering small
rural regions covering 30–100 km2 (Urban Development Branch 2019); and the Kerala
Local Government Service Delivery Project, allocating resources to for governance,
capacity building, and infrastructure to all local governments outside of the six largest
cities in the state (Local Self Government Department 2019).

(a) (b) (c)

Urban Population %-pt change, 2001-2011
<0 0-2.5 2.5-5 5-10 >10

0 1,500 3,000 sretemoliK057

No Data

Fig. 8 Change in urbanization by state, 2001–2011. a Indian Census. b Indiapolis. c MAGPIE estimates
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We also make a methodological contribution to the problem of urban system
definition. When provided with population counts at a sufficient spatial granularity,
MAGPIE can rapidly and easily delineate urban areas and measure their populations in
a much less labor-intensive process than the locality-based methods of e-Geopolis (the
global project of which Indiapolis is part). While our implementation here depends on
dasymetric population disaggregation, this method could be applied to other population
grid products (such as Landscan or GHS-POP) to construct urban hierarchies that
account for non-contiguous urban interconnectivity.

MAGPIE has an added advantage of automatically determining the edge of the city
without relying solely on the contiguity criterion. The intuition behind this method is
that urban areas can be non-contiguous at the edges (Schnieder and Woodcock 2008)
and this method allows for them to become part of the urban region. This is similar but
not identical to US Census delineation of urban areas using a “hop and jump” criteria to
account for discontinuous urbanization (Ratcliffe et al. 2016). One way to account for
discontinuous urbanization is to merge urban areas that are within a certain distance
from one another. However, if we simply merge urban areas that are within a distance
threshold, then there will be situations where urban extents will have tendril/tail or
hourglass-like forms due to sparse connections at the edges or between two large urban
areas. Tendrils are observed when urban development is caused by linear infrastructure
expansions such as highways. MAGPIE allows for these tails to separate urban clusters
as there are only a few edges between them. This method also would merge two large
urban regions into one, only when there is sufficient number of smaller polygons that
are in close proximity to both. Furthermore, if many small urban areas are non-
contiguous, by virtue of them being close to one another, they can form an urban
cluster and could be treated as a single unit.

Urbanity is a continuum and the standard dichotomy between urban and rural is not
adequate to characterize the human settlement patterns and their changes (Hugo et al.
2004; Wratten 1995). However, because the level of urbanization is considered a proxy
for development, we argue that consistent characterizations of urban boundaries are
useful. Hugo et al. (2004) argue that settlements ought to be measured on different
dimensions, including size, concentration, and accessibility within the region. While
our method accounts for the first two characteristics explicitly, we do not account for
the access characteristics, which should be addressed in the future.

Another limitation of MAGPIE as currently implemented is an inconsistent agglom-
eration of peninsular or island settlements into surrounding urban areas from which
they are separated by water features. This is illustrated by the high-density, low
population identified agglomerations of Old Kochi, Willingdon Island, Ramanthuruth,
and Bengre, all of which are part of the cities of Kochi or Mangalore (see lower three
rows of Fig. 5).

Furthermore, our method of agglomerating urban settlements depends on the accu-
racy of the dasymetric disaggregation of census counts, which are only available to us,
at the relatively coarse spatial unit. This could contribute to our method’s production of
large urban agglomerations over areas that are traditionally considered rural, if densely
populated. This could also contribute to error in the other direction, as our disaggrega-
tion may allocate population growth that actually occurred in concentrated cities
throughout the district in which a given city is located. Other data products have
become recently available at finer geographic scale that could have improved the

145Population and Environment (2019) 41:126 150–



results (e.g., Balk et al. 2019; Meiyappan et al. 2018). However, they also suffer from
poor spatial precision of spatial units and reconciling them to create temporally
consistent units is an arduous task. In any case, all gridded population estimates depend
crucially upon the underlying official district-level geographies and counts. Some
limitations related to modeling approach could also affect this estimation. As RF is a
tree-based estimator, it is restricted by the range of training. The prediction using RF
model trained on district-level population density and the zonal mean of covariates will
have lesser range and heterogeneity than the RF model trained on actual pixel scale
population counts and covariate values. In other words, as the variability among the
district-level population density is used to model the variability inside the districts, it
will lead to a less heterogeneous predictions with smaller variance. In this regard, the
sensitivity of MAGPIE with the resolution of training census data needs to be evalu-
ated. Forecasting future urbanization based on current non-linear relationships among
the underlying covariates might be problematic. However, scenario-based forecasting
that estimates future urbanization based on relationships among subsamples might
provide some direction for future research. In addition to the errors associated with
other environmental and remote sensing datasets, we ought to be mindful of this
limitation.

Conclusions

In this paper, we show that definitional differences and seemingly innocuous
choices of thresholds matter a great deal for the delineation and categorization
of urban settlements. Not only the population thresholds matter but also the
density cut-offs are important in distinguishing urban from rural. The density
thresholds also affect the contiguity and delineation of urban areas, which in turn
affect the total population thresholds. Depending on the density cut-off, 35% to
57% of India's population lives in “urban” areas in 2011 (contrast with 31%
estimated by the Census of India). Additionally, about 5–7 million people live
in about 20,000 distinct small towns (< 5000 population) with relatively high
density. Highly dense regions in the Gangetic plain are contiguous enough to
form large agglomerations. Furthermore, because we do not rely on the political
and jurisdictional boundaries and instead rely on a contiguity criterion, our
estimates on the number of medium-sized towns (less than 100k population) are
significantly lower than the Census or the Indiapolis estimates by Denis and Zérah
(2017). Instead, these small towns are coalesced into much larger urban agglom-
erations, thus changing the conclusions that can be drawn about the type and
extent of urbanization in India. The differing boundaries of urban areas and much
larger agglomeration of small towns can be attributed to the accuracy of the
gridded surface. Still, the contiguity-based criterion provides a meaningful way
to compare the urban agglomerations.

We find that the results from our method also challenge the idea about the declining
urbanization rate in India. While there may be strong political and governance reasons
for large and dense “rural” areas to be classified as urban, they pose a problem for
comparative statistics. Our contribution lies in the methodology to harmonize the
differences and provide a consistent characterization of urban across large regions.
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This work can be extended in a few ways. One extension could be analyzing the
sensitivity of this approach with the change in the scale of training data and by using
other types of gridded population dataset products. Another possible extension could be
modeling multiple contiguous countries together with a different economic status and
analyzing the difference in urbanization. This work demonstrates the importance of
seemingly benign and arcane definitional matters to the measurement of urbanization.
Recognizing them would help us fashion institutions and jurisdictions that are better
aligned to manage urban growth.
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