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Abstract Scattered urban development leads to non-

compact urban form. In this paper, I demonstrate that

Index of Moment of Inertia is a useful metric to

measure compactness. However, elongated political

boundaries and natural restrictions severely distort the

metric, rendering it less useful for monitoring urban

development. I propose a landscape shape adjustment

of this metric that retains some of the useful properties

of the Index.

Keywords Compactness � Urban form � Landscape
metrics

Introduction

It is of significant interest to characterize urban form

and its change for various cities (e.g. Schneider and

Woodcock 2008; Seto et al. 2011) and to study their

effect, among other things, on air quality, transporta-

tion behaviour and relationships with environment

(e.g. McCarty and Kaza 2015; Stone et al. 2007; Jones

and Kammen 2014). One of the consistent findings in

the literature is that sprawling urban form is costly and

less sustainable (Carruthers and Ulfarsson 2003; Fan

and Song 2009; Frumkin 2002). Urban sprawl is a

multi-dimensional phenomena (Galster et al. 2001;

Frenkel and Ashkenazi 2008; Schwarz 2010). There

are number of ways to characterise urban sprawl

including low population density, predominance of

single family housing and discontinuous urban devel-

opment. To monitor sprawling patterns, various indi-

cators that rely on continuity, density, clustering and

proximity have been proposed (e.g. Tsai 2005; Jaeger

and Schwick 2014). One dimension of urban form that

contributes to sprawl is dispersed fragmentary pattern.

In this short note, I illustrate some challenges associ-

ated with measuring this pattern using a compactness

measure derived from raster datasets and landscape

metrics.

Conventionally compactness is defined for a single

shape. Various metrics to characterise a compact

shape have been proposed over the years (see

Maceachren 1985; Gustafson 1998; Angel et al.

2010 for reviews). Many of them rely on comparing

a property of the shape to that of the circle, the most

compact 2D shape. For example, Schwartzberg

(1966), Miller (1953), and Polsby and Popper (1991)

rely upon the ratio of the perimeter of the shape to that

of a corresponding circle of equal area. Reock (1961),

uses the ratio of the areas of the shape and the

minimum bounding circle. Zhao and Stough (2005)

prescribe an overlap index that is a variant of an

elongation index, that measures the ratio of a maximal

overlap of the equal area circle to the shape. The
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maximal overlap is usually determined by an exhaus-

tive search for a centre that is in the interior of the

shape. Another commonly used shape compactness

metric has been introduced by Boyce and Clark

(1964), that uses equally spaced radials from the

centroid and measuring the variation in the lengths of

the radials to the perimeter. Angel et al. (2010) extend

these concepts to characterize different notions of

compactness of a shape by looking at other aspects

such as dispersion, girth and range.

All these metrics are susceptible to issues of

resolution and accuracy of measurement of perimeter

and area as well proper treatment of holes and other

non-simple features that are often found in urban

areas. In particular, many of these metrics are designed

for a single polygonal or contiguous/connected

shapes. However, urban areas are often polynucleated

and characterized by fragmentation especially at the

edges (Batty 2001). Similarly, urban growth is often

characterized by simultaneous processes of disper-

sion, coalescence and infill (e.g. Schneider and

Woodcock 2008). Shape compactness metrics are

local compactness metrics and for urban form. We

need meso-level compactness metrics that take into

account multiple distinct and discontinuous shapes at

different distances. Unlike other landscape metrics to

characterize urban form, central moments of the

distribution of the shape compactness distribution

(mean, variance etc.) are not sufficient to characterize

the compactness of urban form and growth.

Landscape level compactness measures that are not

averages or variances, also exist in the literature. For

example, Zhou et al. (2016) use weighted area-

perimeter ratio of the aggregated shape and the

closeness between the parts of multi polygon as a

measure of overall compactness. Huang et al. (2007)

use the sum of the ratio of the perimeter of the patch to

that of the Equal Area Circle (EAC) of the patch and

normalise it by the square of the number of patches.

Angel et al. (2010), defined Exchange Index (EI) as

the ratio of the urban area that is covered by the EAC

that is centred on the centre of gravity of the landscape.

Li et al. (2013) proposed ratio of area moment of

inertia (MI) of the shape to that of the EAC.

Taubenböck et al. (2019) proposed a dispersion index

(DI) that is based on number of patches (contiguous

urban areas) and the largest patch index. While the

former two are a measure of compactness, the latter is

a measure of dispersion. In this paper, I focus on the Li

et al. (2013) measure and compare it with the EI and

DI. I demonstrate some challenges of this index by

measuring the compactness of urban form in each

county within the contiguous United States. I use this

sample for its wide variety of urban form and political

boundaries.

Index of moment of inertia as a measure of urban

compactness

Two features of Li et al. (2013) measure makes it

particularly attractive to measure urban dispersion. (1)

MI of a collection is decomposable to its individual

parts (2) Parallel Axis Theorem. If Iz is the MI of an

area a, passing through an axis at centre, the MI at an

axis d away from the center is Iz þ ad2. Furthermore,

for a collection of areas K, the MI is
P

k2KðIk
z þ akd2

k Þ,
where dk is the distance of each area ak from the

overall centroid and Ik
z is the MI of the individual part

with respect to its own centroid. These properties

makeMI a useful metric for urban areas represented as

rasters. The MI for each square (assuming that the

raster resolution is the same in both x and y directions)

with resolution s is s4=6. Thus, the MI for the urban

landscape S is

X

i2S

s4

6
þ d2

i s2
� �

vSðiÞ

where vSðiÞ ¼ 1 when the cell i is urban, 0 otherwise.

di is the distance of cell to the centroid of the urban

area in the landscape.

The MI of the most compact shape, circle with the

same area, is A2
u=ð2pÞ: Thus, the Index of Moment of

Inertia (IMI) is

IMIu :¼ A2
u

2p
P

i2S s2ðs2

6
þ d2

i ÞvSðiÞ

Since a raster can only approximate a circle, IMI is

always ð0; 1Þ and is dimensionless.

This metric has been used to evaluate the spatial

patterns of urbanisation (Kaza 2020), voting districts

(Fan et. al 2015) and police districts (Bucarey et al.

2015). In a study of urban patterns in the US using this

metric, Kaza (2020) found that urban areas in the

South and the West are more fragmented and

dispersed. In particular, counties in Florida and
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California have both large number of urban patches

and large average urban patch size. Large urban

subdivision development in the green fields at the

edges of cities, punctuated by undeveloped land or

open spaces characterize these urban areas. Large

central metro counties score well on this compactness

metric compared to suburban and rural areas, which

have both low and dispersed urban development

patterns. Of all the large central metro counties, on

average, counties in West North Central are most

compact, while Mountain counties are least compact.

In general, counties with higher degree of urbanization

and centrality have higher compactness scores. There

appears to be no discernible relationship between

urban population density and IMI. Some dense places

(e.g. New York, NY) have small IMI and some low

density medium metropolitan areas have high com-

pactness (e.g. Ronoke, VA) suggesting that the two

indicators are orthogonal.

While IMIu is a reasonable metric for measuring

compactness, it has some problems associated with the

landscape boundary and urban suitability. For exam-

ple, the IMI for NewYork County (Manhattan) is 0.27,

not because the urban form is spread out, but because

the county boundaries are elongated (see Fig. 1).

Another example is Multnomah County (Portland); it

scores relatively modest on this metric belying its

reputation for extensive growth management policies

(Song and Knaap 2004). Furthermore, some county

boundaries have water or undevelopable land on them,

which constrains the urban from. Since we do not want

to penalize these types of urban developments, we

have to adjust the IMI to account for these exogenous

factors.

Landscape shape adjustment

To correct for limitation of urban areas by geograph-

ical or political boundaries on the IMI, I first define a

coverage index as Au=AL, where Au is the urban area

and AL is the area of the developable landscape area.

Both water area (including coastal waters and lakes) as

well as land with high slopes are removed from the

landscape boundary and the area AL is calculated. To

account for the non-compactness, I use the index of

moment of inertia of this landscape shape for the

adjustment, IMIL. The adjusted urban compactness

index is defined as

IMIadj :¼ IMI
IMIL�ð1�Au

AL
Þ

u

IMIL as well as coverage index are less than 1. Since

IMIu\1, and because the adjustment factor is � 1,

IMIadj [ IMIu. Furthermore, IMIadj is always ð0; 1Þ.
Counties with higher coverage ratio and non-compact

boundaries will receive larger adjustment, where as

counties with low coverage ratio will receive a smaller

adjustment. The adjustment factor is non-linear and

would designate urban areas that are fully covering the

landscape as the most compact with IMIadj ¼ 1, as the

adjustment factor is 0, irrespective of the shape.

Furthermore, the adjustment factor of the landscape

shape is more relevant when the coverage index is

0.0 0.5 1.0 1.5 2.0 2.5 km

0 5 10 15 20 25 km

0 5 10 15 20 km

New York, NY
IMIu = 0.27

Multnomah, OR
IMIu = 0.53

Rock Island, IL
IMIu = 0.20

Fig. 1 Illustrations of external validity problems with IMI as a measure of compact urbanization
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large. The adjustment factor does not affect IMIu only

in situations where the landscape is a perfect circle and

there are no urban areas. When there are no urban

areas, IMIu is 0 anyway.

Data preparation

I use National Land Cover Data (NLCD), circa 2011,

was produced by the U.S. Geological Survey (2014)

and retrieved from the Multi-Resolution Land Char-

acteristics Consortium website (� 9 billion pixels, 30

m resolution). The data is selected because of it

suitability to demonstrate the indices on wide range of

urban patterns rather than its currency. I focus only on

the urban land cover classes (21–24) at a county level,

for the contiguous United States (n ¼ 3; 109). This

urban land cover is noisy because of presence of roads

and other linear features that impact fragmentation and

compactness metrics. I use procedures described in

Kaza (2020) (e.g. morphological operations, removal

of small patches etc.) to prepare an adjusted urban land

cover for each county.

To determine the areas of high slopes, I use

elevation data from the U.S. Geological Survey

(Sugarbaker et al. 2017) and determine pixels of more

than 15% slope. Water features are derived from the

NLCD water and perennial snow classes (11,12).

County boundaries are from U.S. Census, downloaded

using tigris package (Walker 2019) and rasterized

using fasterize package (Ross 2018).

Discussion

According to IMIu, Dallas and Orange are the most

compact counties in West South Central and Pacific

Census Divisions (see Table 1). The reputation that

Dallas-Fort Worth and Los Angeles Metropolitan

areas (of which these counties are part of) as the

quintessential sprawling metropolitan areas poses

questions about external validity for the use of IMIu
as a measure of urban compactness. Once landscape

adjustment is made, IMIadj returns Multnomah County

(Portland) and Orleans Parish (New Orleans) as the

most compact county in the Pacific and West South

Central Census Divisions respectively. Jefferson

County, Washington sees the largest gain in IMI due

to the adjustment (while IMIu is 0.01, IMIadj is 0.60) in

the Pacific Division. The county is home to the

Olympic mountains and the central part the county is

uninhabited. The eastern and western communities are

not connected by road due to the barriers. Such urban

form, predictably is penalized by IMIu, the adjustment

recognizes these limitations and alleviates the score.

The proposed adjustment, also substantially changes

the scores of three counties in Fig. 1; New York

(IMIu ¼ 0:27; IMIadj ¼ 0:65), Multnomah (IMIu ¼
0:53; IMIadj ¼ 0:84) and Rock Island (IMIu ¼ 0:20;

IMIadj ¼ 0:60).

Similarly, Suffolk (Long Island), Fulton (Atlanta)

have non-compact county boundaries and therefore

receive large adjustments (see Fig. 2). Jefferson Parish

in Louisiana have significant water features that

separate the main urban areas, also is now pegged as

moderately compact. On the other hand, already

compact counties (e.g.Roanoke) or relatively devel-

opmentally unrestricted counties (e.g. Johnson and

Table 1 Counties with the

largest value of the

compactness score and its

change due to landscape

adjustment

Census Division IMIu IMIadj IMID :¼ IMIadj � IMIu

Pacific Orange,California Multnomah,Oregon Jefferson,Washington

East North Central Marion,Indiana Marion,Indiana Keweenaw,Michigan

West North Central St. Louis,Missouri St. Louis,Missouri Pennington,South Dakota

Middle Atlantic Kings,New York Kings,New York Suffolk,New York

New England Kent,Rhode Island Hampden,Massachusetts Grand Isle,Vermont

East South Central Shelby,Tennessee Shelby,Tennessee Perry,Kentucky

West South Central Dallas,Texas Orleans,Louisiana Jefferson,Louisiana

Mountain Salt Lake,Utah Salt Lake,Utah Shoshone,Idaho

South Atlantic Roanoke,Virginia Roanoke,Virginia Mingo,West Virginia
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Fig. 2 Illustration of

changes in the score because

of adjustment for different

urban patterns
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Hall) experience very little changes in the score (see

Fig. 2).

A vast majority of the counties experience very

little change in the urban compactness score. Only

14% of the counties see their IMI go up by more than

0.1 and 2% see changes that are more than 0.2. But in

some instances, the score is adjusted by as much as

200%. Most of the counties that experience large

changes are located in the heavily urbanized North-

eastern corridor (see Fig. 3), in the hilly regions of

Appalachia, in the Bayous in the Gulf coast of

Louisiana. In the Pacific coast where compactness

score is improved, it is due to mountainous and

irregularly shaped counties. Another distinct cluster

can be observed in counties along the Rocky moun-

tains in Idaho and Colorado. Coastal counties that are

constrained in their development patterns by water in

South Carolina and Florida also experience modest

changes.

Counties are categorized by their metropolitan

status (metro vs non-metro), size (large, medium and

small) and location (central and fringe) by National

Center for Health Statistics (NCHS) (Ingram and

Franco 2012). Only 22 out of the 68 large central

metros experience changes in IMI over 0.1. However,

these changes are significant. IMIadj for New York

county is 0.65, while IMIu is 0.27. Similarly, Fulton,

Georgia (Atlanta), Denver and Riverside counties

experience modest to large gains. While this adjust-

ment seems to provide defensible indicators for New

York, the case of Fulton reminds us that IMI does not

capture the effect of population density. It is a measure

of dispersion and fragmentary urban patterns in two

dimensions.

22% of other types of metro counties experienced

significant change because of the adjustment. For

example, the large fringe metro counties such as

Jefferson Parish, Louisiana saw large gains, as did

Placer County, California and Suffolk County, New

York (Long Island). Some, non-core counties also saw

significant gains rivalling those of large fringe metro

counties, but their gains are not substantively impor-

tant as the total amount of urbanization in non-core

counties is small and is not as important.

N

0 500 1000 1500 km

IMIadj − IMIu

0.1 0.2 0.4 0.6

County Type
Large Central Metro
Large Fringe Metro
Medium Metro
Small Metro
Micropolitan
Non−core

Fig. 3 Change in the compactness index of urban areas because of landscape adjustment. Only counties with more than 0.1 differential

are shown for illustration purposes. The full dataset is available at https://doi.org/10.15139/S3/YLZEH4
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The scatter plot of the IMID relative to IMIu reveal

that the changes are most significant at the lower end

of the urban compactness score (see Fig. 4), when they

are significant. The more compact counties, the

smaller the adjustment as can be expected. However,

in large central counties, some of moderately compact

counties experience substantial changes in the score.

In medium and small metro counties the adjustment

has moderate effect on more non-compact counties,

though there are some medium metro counties in the

middle of the spectrum that experience changes over

0.2. In micropolitan and non-core counties, almost

exclusively the large effects are found in the lower end

of IMIu distribution.

Comparison with other metrics

In this subsection, I demonstrate the performance of

IMIadj relative to Angel et al. (2010)’s EI and

Taubenböck et al. (2019)’s DI. To make comparisons

more robust and straightforward, I linearly scale DI to

[0,1] and use 1� DI as a measure of compactness. In

all the three cases, compact urban form gets values

closer to 1, while dispersed urban form is closer to 0.

The distribution of 1� DI does not capture the

range of urban patterns. The inter quartile range for the

index is less than 0.01. Only 34 of the 3109 counties

have the index more than 0.6. Most of these counties

are compact cities with small geography and tightly

connected contiguous urban areas such as Baltimore

Fulton

New York
Multnomah

Whatcom

Jefferson

Keweenaw

Rock Island

Jefferson

Mingo

Small Metro Micropolitan Non−core

Large Central Metro Large Fringe Metro Medium Metro

0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8

0.0

0.2

0.4

0.6

0.0

0.2

0.4

0.6

IMIu

IM
I a

dj
−

IM
I u

Fig. 4 Change in urban IMI due to landscape adjustments relative to unadjusted compactness scores for different types of counties
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city and Broomfield county (see Fig. 5). This is

because the largest patch index penalises discontinu-

ous but tightly clustered urban form. On the other

hand, outliers in the index for the non-core counties

are predominantly dominated by small independent

cities (county equivalents) in Virginia. While 1� DI

High Values Low Values

IMIadj

0 1 2 3 4 5 6 km

0 5 10 15 20 km

Kings, New York
IMIadj = 0.841
EI = 0.821

1−DI = 0.584

Maskon, Washington
IMIadj = 0.105
EI = 0.185

1−DI = 0.496

EI

0 5 10 15 20 km 0 5 10 15 km

Shelby, Tennesse
IMIadj = 0.705
EI = 0.764

1−DI = 0.516

Hinsdale, Colorado
IMIadj = 0.231
EI = 0.100.

1−DI = 0.496

1−DI

0 1 2 3 4 5 km 0 2 4 6 8 10 12 km

Broomfield, Colorado
IMIadj = 0.708
EI = 0.577

1−DI = 0.696

Essex, Vermont
IMIadj = 0.024
EI = 0.000

1−DI = 0.479

Fig. 5 Illustration of the

performance of different

compactness indicators.

IMIadj is the Adjusted Index

of Moment of Inertia. EI is
the Exchange Index. DI is
the Dispersion Index
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might be useful to measure compactness of urban

areas at a metropolitan scale for mega cities, the

measure is not informative to measure urban form at

county scale in the United States.

The distribution of the EI is much more similar to

that of IMI. The Spearman correlation between the

two indices is 0.77, which suggests modest correla-

tion. However, it should be noted that 18% of the

counties have no EI index because the EAC does not

intersect with the urban areas. This is because the

centroid of the urban areas fall in areas that are not

urbanised. Vast majority (75%) of these counties are

non-core but 77 of these counties are metropolitan

counties. However, it should be noted that

predominantly rural counties such as Gates, Virginia

and Gilpin, Colorado are included in these metropoli-

tan characterisations, suggesting caution in uncriti-

cally accepting the NCHS county type classification.

While all three indices characterise large central

metro counties as more compact (see Fig. 6) than other

types of counties. The spread of the indices is also

much lower for these large central metro counties.

However, EI characterises other types of metro

counties more compact than IMI, on average. This is

because IMI penalises distance of urban areas from the

centroid, where as EI only accounts for whether the

urban areas are within the EAC or not.

Small Metro Micropolitan Non−core

Large Central Metro Large Fringe Metro Medium Metro

1−DI EI IMIadj 1−DI EI IMIadj 1−DI EI IMIadj

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Index

va
lu

e

Fig. 6 Comparision of different compactness indicators by county type. IMIadj is the Adjusted Index of Moment of Inertia. EI is the

Exchange Index. DI is the Dispersion Index
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Conclusions

In this short note, I demonstrated that identifying

compactness of urban area is complicated by land-

scape shape and other restrictions. I demonstrated an

adjustment to the IMI that account for both coverage

ratio and elongated landscape shapes. While the

adjustment for landscape shape makes the IMI more

representative of the compactness of urban form, it

does not fully capture our intuitive understanding of

compact urban form. Thus, the index should be used in

conjunction with other indicators to fully capture the

richness of the multi-dimensionality of urban

condition.

References

Angel, S., Parent, J., & Civco, D. L. (2010). Ten compactness

properties of circles: measuring shape in geography. The
Canadian Geographer / Le Géographe canadien, 54(4),
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