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Abstract 15 

The development of historic modes of dynamic behavior is widely accepted as a key step in the 16 
system dynamics modeling process.  By understanding past system trajectories, modelers can 17 
delineate causal relationships within dynamic systems, particularly by employing dynamic 18 
system archetypes such as growth and decline (exponential, goal-seeking, etc.), oscillation, and 19 
combinations thereof.  Our goal is to characterize spatial dynamic patterns in a similar manner to 20 
the current characterization of non-spatial dynamic system archetypes. We extend the reference 21 
mode concept to models of spatial-dynamic phenomena, focusing on archetypes of changing 22 
spatial patterns in multi-dimensional landscapes using two characterizations of space, fields and 23 
‘networks’. While fields, as they are known in spatial science parlance, provide a continuous 24 
description of space, we argue that networks more readily characterize the discretization of space.  25 
 26 
Recent spatial-system dynamics research has articulated ‘space’ as a tessellation into regular 27 
grids. Similar tessellation can be employ hexagons, triangles, and other geometric shapes.  28 
Although this is quite common in the geography and spatial modeling literature, there is often 29 
little underlying logic that guides decisions on the representations of space in these models. We 30 
argue that in order to abstract away the artifacts of this tessellation, we should instead view 31 
spatial interactions as they occur across a topological network that defines the underlying 32 
structure of space.  By doing so, we can construct and use irregular tessellations of space and 33 
then accommodate diverse spatial representations, including raster and vector models of 34 
landscapes, social connections and networks, and diffusion vectors. 35 
 36 
In this paper, we explore the connections between temporal dynamics and their spatial 37 
manifestations of change.  We tap a growing literature on static spatial analysis techniques and 38 
spatial network representations to better understand the influence of space on dynamic 39 
relationships.  We also explore several factors in creating spatial-dynamic archetypes, including 40 
the expression of particular growth and collapse patterns, and the spatial contiguity necessary for 41 
temporal and spatial feedback.  In particular, we apply these ideas to a variety of spatial 42 
problems including urban growth, ecological systems, and networks (disease transmission). 43 
 44 
By extending the reference mode concept spatially, we argue for a spatial modeling paradigm 45 
that parallels the “learn-by-analogy” pedagogical technique presented by system archetypes that 46 
have evolved during the last fifty years of system dynamics research. 47 
 48 
 49 

50 



 

 3 

Introduction 51 

 As systems dynamics (SD) has growth in popularity and range of application over the last 52 

fifty years, its use of scientifically rigorous and iterative modeling processes has differentiated it 53 

from other modeling methods (Saeed 1998a; Saeed 1998b; Saeed 2001).  A series of efforts have 54 

been made to explicitly structure the SD modeling process (Sterman 2000).  In particular, 55 

application of historic modes of dynamic behavior, known as “reference modes,” has become a 56 

key factor in promoting SD models that are rigorous and causally-focused (Saeed 1992; Saeed 57 

1998a).   58 

Reference modes are storehouses of sorts for dynamic information, allowing modelers to 59 

explore historical dynamic patterns of systems to better understand how systems behave over 60 

time.  This information is used to create a causally-explicit, dynamic hypothesis of how a system 61 

operates and how problems may develop, which can then form the basis of rigorous, quantitative 62 

stock-flow-feedback representation of system elements (Sterman 2000).  As SD modeling has 63 

become more common, modelers began creating archetypical dynamic hypotheses known to 64 

produce frequently encountered reference mode behaviors.  These ‘systemic archetypes,’ 65 

(sometimes also referred to as ‘generic structures,’ ‘atoms of structure,’ or ‘micro-structures,’ 66 

which different authors define and use differently; Paich 1985; Lane 1998; Wolstenholme 2003; 67 

2004), help to explain a variety of system behaviors, the most basic of which include linear, 68 

exponential, and logistic growth and decline, oscillations, and overshoot and collapse (Breierova 69 

1997 ; Chung 2001).  Wolstenholme (2003, pg. 342) makes an excellent case for the 70 

development and use of archetypes, noting their ability to “offer solutions to complex 71 

problems,…aid quantitative modeling, ….assist model conceptualization, …[and] communicate 72 

modeling insights by collapsing a model down to its basic loops.”    73 
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While there have been several applications directly within the field, a vibrant field of 74 

spatial-dynamic modeling has emerged in the last two decades outside of SD, offering 75 

compelling arguments for explicitly considering detailed spatial structure and effects within 76 

models.  In fact, work on spatial autocorrelation has demonstrated major specification errors and 77 

other problems in models that fail to explicitly consider the spatial relationships between 78 

interconnected system elements (Anselin 2002). For example, in multi-species ecological, 79 

populations can be modeled as they change at different rates. However, when interactions 80 

between species are crucially dependent on their locations, not just on aggregate numbers, it pays 81 

to make the spatial dimensions of these populations and interactions explicit. 82 

Unfortunately, very limited work has attempted to apply the rigorous elements of the SD 83 

methodology in a spatial context, particularly using well-developed spatial analytical 84 

frameworks advanced in recent decades.  The application of reference modes and systemic 85 

archetypes in the spatial realm is very much a new frontier for SD research, with substantial 86 

implications for the rigor and communicability of spatial-dynamic models.  87 

During this article, it is our goal to offer a theory and strategy that extends system 88 

archetype concepts to dynamic systems whose structure and behavior are determined by spatially 89 

explicit processes.  In exploring this extension, we focus on expanding current two-dimensional 90 

reference modes (point data mapped through time) into four/five-dimensional modes (point data 91 

mapped over a two- or three-dimensional spatial surface and through time).   92 

This article is organized into five substantive sections, beginning with a comparative 93 

discussion of spatial reasoning in SD and other fields, followed by a discussion of temporal and 94 

spatial feedback and a taxonomy of continuous spatial-dynamic processes.  We then offer several 95 

examples of spatial-dynamic models, including simple spatial extensions of basic system 96 
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archetypes (which we term ‘extensive processes’), followed by more complex, ‘intensive 97 

process,’ examples of spatial diffusion, simple disease spread, and disease spread across a 98 

dynamic spatial network.  Finally, we conclude with a discussion of the implications of this 99 

research on the larger system dynamics research agenda. 100 

Space in System Dynamics 101 

 System dynamics has explored spatial modeling a number of times over the last 50 years.  102 

Zonal models, such as the one created by Wilbert Wils (1974) to extend the Forrester (1969) 103 

Urban Dynamics study, have attempted to disaggregate areas, such as cities, by replicating model 104 

structures to represent varying characteristics of the landscape (e.g. central business district, 105 

inner ring suburbs, outer ring exurban areas).  However, although Urban Dynamics offered 106 

sophisticated dynamic representations of urban development processes (even in today’s terms, 107 

more than 40 years later), representation of spatial heterogeneity was so limited as to amount to a 108 

major criticism of the model and its later extensions (Burdekin 1979).   109 

 More recent zonal models include work by Mosekilde et al. (1988) who model chaotic 110 

behavior in a two-zoned city, Rich (2008) who modeled the movement of foot and mouth disease 111 

between zones throughout South America (Figure 1a), and Pfaffenbichler et al. (2010) who 112 

model land use-transportation interactions in the City of Leeds, UK.  These studies are similar in 113 

their attempts to spatially-disaggregate the area of analysis in order to more accurately 114 

parameterize models, understand interactions, and improve model usability and accuracy.  115 

[Insert Figure 1 here]  116 

The problem in confining SD spatial reasoning in this manner relates to the manner in 117 

which zonal models treat space.  For example, in the Wils (1974) model, we may know, for 118 

example, that Zone 2 lies between Zones 1 and 3, and that it possesses some spatial extent 119 
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(Figure 1b.  However, within the model itself, that extent is irrelevant, and zones are modeled as 120 

two interacting entities without any specific location.  Zones, like aggregate models, continue to 121 

represent spatial areas as points, which fail to convey any information about relationships across 122 

or within space, or information about spaces themselves.  Although this representation may be 123 

sufficient in many situations, it is limiting in many others, particularly scenarios where 124 

substantial environmental or spatial heterogeneity determines or influences system structure and 125 

behavior (e.g. Anselin 2002; BenDor and Metcalf 2006).  As Douglass Lee (1973) discussed in 126 

his seminal “Requiem for Large-scale Models,” much of the usefulness in modeling arises when 127 

models are used to represent sophisticated problems in usable ways.  For many problems, spatial 128 

detail greatly enhances model accuracy, visualization and communication ability (Lowry and 129 

Taylor 2009), and usability.  130 

More advanced spatial applications in SD include ’s (1999) simple SD model of spatial 131 

heterogeneity in a drainage basin, which employed a more sophisticated characterization of 132 

gridded space whereby single stocks represented water levels in connected landscape areas 133 

(Figure 1c).  Ford ’s (2009) model demonstrates the difficulty in replicating system dynamics 134 

models in each grid cell, similar to zonal applications.  Efforts to overcome this difficulty have 135 

emerged in several efforts to spatialize system dynamics models (Maxwell and Costanza 1997b; 136 

Ahmad and Simonovic 2004). 137 

Perhaps the most sophisticated effort to explicitly marry SD techniques to spatial 138 

modeling have emerged in systems such as the Spatial Modeling Environment (SME), a platform 139 

for ‘spatializing’ system dynamics models by replicating them into gridded cells (see Figure 1d) 140 

and parameterizing them with geographic information systems (GIS) spatial data (Maxwell and 141 

Costanza 1997a; b).  However, while this, and similar frameworks, are useful for a variety of 142 
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applications (Voinov et al. 1999; BenDor and Metcalf 2006), none of the efforts to spatialize SD 143 

modeling have attempted to ‘spatialize’ SD’s actual modeling process or its theoretical and 144 

scientific underpinnings.  145 

Spatial Thinking in other Disciplines 146 

The field of spatial analysis has growth rapidly in parallel to the development of system 147 

dynamics, drawing an array of spatial analytical techniques from fields such as ecology (e.g. 148 

tools for assessing the spatial fragmentation of wildlife habitat; McGarigal and Marks 1995) and 149 

economics (e.g. spatial econometrics; Anselin 2002; 2003).   150 

Allen and Hoekstra (1993) propose an interesting allegory for spatializing SD theory in 151 

their discussion of the ‘grain’ and ‘extent’ of ecosystems and ecological communities.  In SD, 152 

modelers typically focus on determining time step and time horizon, two measures of the ‘grain’ 153 

(temporal resolution, in this case) and ‘extent’ (length of model run) of a system being modeled.  154 

In considering grain and extent in a spatial context, we must consider that behavioral reference 155 

modes are empirically observed phenomena and are therefore vulnerable to changes in the scale 156 

of analysis (the spatial extent we model) and the unit of analysis (the grain or resolution of space 157 

we consider; Wolfram 1983; Allen and Hoekstra 1993).  The role of, and sensitivity to changes 158 

in, spatial extent and resolution is a profoundly important and on-going area of study in spatial 159 

analysis and modeling fields.   160 

An attendant debate within Geographic Information Science (GIScience; Longley et al. 161 

2005) is the conception of space as either Newtonian or Leibnitzian (Galton 2001). The 162 

Newtonian conception requires the underlying geography to be absolute and act as an inert 163 

container; objects acquire properties, such as position, velocity etc., within this geography. 164 

Newtonian space is specified independently and prior to the description of objects that inhabit it 165 
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and is therefore an absolute view of space.  Contrasting this is the more relativist Leibnitzian 166 

model, which asserts that space is constructed through relations between arrangements of objects.  167 

Therefore, space does not exist in any absolute way, and is merely a construct generated from the 168 

locational attributes of our objects of interest. While both views have different merits and 169 

problems, we argue that, for the purposes of this article, the Newtonian conception is more 170 

readily amenable for use in SD modeling practices (although this may not be true for many of the 171 

emerging SD applications in agent-based modeling; Pourdehnad et al. 2002; Borshchev and 172 

Filippov 2004). Although it is important to understand different theoretical representations of 173 

‘space’, we are much more interested in the topological construction of space itself. 174 

While space has been defined in a variety of ways, the spatial science literature has 175 

focused primarily viewed space through vector or raster frameworks.  In vectorized space, 176 

objects are depicted as points, lines (connected points), and polygons (area enclosed by 177 

connected lines).  In rasterized space, which is more common for spatial modeling applications, 178 

space is tessellated into a collection of plane shapes with no overlaps or gaps (sometimes squares, 179 

rectangles, or hexagons of equal shape and size, as in a grid). However, as we will argue shortly, 180 

the raster-vector debate found in the GIScience literature becomes somewhat irrelevant for our 181 

purposes if we are primarily concerned with the topological connectivity between interacting 182 

entities in order to define tessellations or vector arrangements of objects. 183 

The vector/raster comparison is similar to that of continuous and discretized models of 184 

time in classical SD modeling treatments.  While the vector representation of space is more 185 

accurate (as is a continuous representation of dynamics), it is often computationally and 186 

theoretically intractable for modeling applications.   Conversely, raster representations, like 187 

discretized time steps, approximate spatial processes given the spatial resolution of a model.  188 
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The technical representation of raster and vectors is the manifestation of an important 189 

dichotomy underlying the conceptualization of space. The geographic modeling literature 190 

(Couclelis 1992; Goodchild 1992; Egenhofer et al. 1999 ) characterizes this dichotomy by 191 

distinguishing ‘fields and ‘objects.’ Field-based representations of space completely and 192 

exhaustively tessellate space either into rectangular or other polygonal entities. Once a 193 

tessellation is specified (e.g. a rectangular grid or zones comprising cities or suburban regions), 194 

each location is endowed with continuous (e.g. temperature) or discrete (e.g. population) 195 

attributes, which are subject to change over time due to influence of the attributes of neighboring 196 

cells.   197 

On the other hand, objects are entities with attributes that can include location. Therefore, 198 

objects can potentially move in space and acquire new attributes.  Couclelis (1992) argues that 199 

both fields and objects are representative of various types of geographical knowledge and neither 200 

uniquely or completely fit the types of problems that spatial system dynamics models may seek 201 

to address. The object/field dichotomy is important to distinguish when constructing models that 202 

have objects that change locations or locations that have attributes. For the most part, SD models 203 

deal with the latter, even when the underlying space need not be exhaustively and continuously 204 

tessellated. 205 

The growth of spatial statistics has spawned a new analytical perception of space, which 206 

replaces information about the actual location of objects with a network representation of their 207 

relationships to each other.  These “network topologies,” as they are known, can be powerful 208 

representations of space, and can include information about the neighborhood around objects. In 209 

addition to representing the topology of the space, this representation lends itself to representing 210 

the strength of network relationships through the imposition of weights on network links. (e.g. 211 
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strong social relationships, or speed limits determining rate of movement between cities), and 212 

abstract information, which may be vitally important to studying a system, about space itself that 213 

often cannot be captured by spatial grids (e.g. a disease spreading across a series of valleys, or a 214 

flow of information from one local economy to another nearby).  215 

Defining relationships in spatial dynamic systems commonly relies on measures of 216 

distance in a landscape or between system elements.  Distance is often measured as simple 217 

proximity, but under network characterizations, distance can also be modeled in a more 218 

sophisticated manner through the use of ‘spatial weights matrices’ (Anselin 2003), which are 219 

arrays that define ‘adjacency’ in space, or reduce the bulk of information about spatial 220 

arrangement in a landscape to a simple representation of neighboring relationships (and strength 221 

of relationship) between landscape elements.   222 

System dynamics research has made several forays into network analysis.  Reggiani and 223 

Nijkamp (1995) explored complexity and chaos across a network, demonstrating “how a network 224 

can be conceived of as a complex space-time system, whose evolution depends on critical factors 225 

that are interrelated in space and time by means of a connectivity structure.”   This important 226 

finding has led to more complex views of networks, such as that of Cruz and Olaya (2008), who 227 

created a network model using the Mathematica software that simulates network marketing as it 228 

could occur dynamically across changing connections within a network.  Additionally, 229 

Alekseeva and Kirzhner et al (1994) discuss material exchange across a network, implementing a 230 

complex, multi-stock model of a multi-centric, immuno-dependent tumor. 231 

Spatial Reference Modes and Systemic Archetypes 232 

Spatial modes of historical reference behavior represent descriptive patterns of spatial 233 

change over time.  Usually, these are based on historical observation, and rely, like classical 234 
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reference modes, on pattern recognition to understand the type of dynamic observed.  Like their 235 

non-spatial counterparts, spatial reference modes are empirically observed phenomena that are 236 

vulnerable to changes in the scale, extent, and grain of analysis (Chen and Pontius In Press).  237 

Following this, spatial systemic archetypes are theoretical abstractions that describe, in part or in 238 

whole, one or more reference modes. 239 

Taxonomy of Continuous Spatial-Dynamic Processes 240 

Classic SD texts such as Sterman (2000), Paich (1985), Lane (1998) and Ford (2009) 241 

define numerous system archetypes, including those grouped around growth, decline and more 242 

complex combinations of simpler archetypes (see Table 1).  Growth archetypes include linear, 243 

exponential, goal-seeking, and logistic growth – a combination of exponential and goal-seeking 244 

growth under shifting feedback loop dominance (Glick and Duhon 2001).  Similar archetypes 245 

describe decline behavior, including linear, exponential, and goal seeking decline. Archetypes 246 

can be grouped into more complex archetypes, such as oscillation, damped oscillation, and 247 

overshoot and collapse behavior, as a means of avoiding wasted model-building effort and 248 

enhancing transferability of basic modeling concepts (Paich 1985; Wolstenholme 2003).  Very 249 

advanced system archetypes have been developed over the years to represent complex behavior 250 

that is commonly seen in many situations (e.g. market growth, Forrester 1968; acceptance-251 

rejection behavior; Ulli-Beer et al. 2010). 252 

[Insert Table 1] 253 

 We divide spatial-dynamic processes into two different categories, extensive and 254 

intensive, in order to explore ways of thinking about systemic archetype structures underlying 255 

different types of continuous spatial-dynamic behavior. 1  Extensive spatial processes involve 256 

                                                
1 System dynamics models classically do not consider discontinuous processes (e.g. discrete event modeling; Banks 
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change at the margins (i.e. processes that flip a point in space from being within a domain of the 257 

process to outside the domain, or vice versa). Under Intensive spatial processes, on the other 258 

hand, the value of the process at each point affects the value at the neighbors. While, it may seem 259 

that extensive processes are a subset of the intensive processes, it will be useful to think of them 260 

separately in formulating spatial system archetypes.  261 

Extensive Processes  262 

Extensive processes describe the extent of boundaries or characterize changes in 263 

boundaries over time. An example of this would be a model of the region into which a given 264 

technology has diffused, with the edges of the region gradually changing as new areas adopt the 265 

technology.  Extensive spatial processes are analogous to Markov processes, where the value at 266 

the next time step is dependent only on the current value, not on history (Bhat and Miller 2002).  267 

In a sense, these are strictly binary processes, where Newtonian space is divided into regions 268 

either inside or outside the domain of the process.   269 

Under these conditions, the process of expansion of the boundary can be described by 270 

archetypes that are very similar to those of aspatial process. Table 2 provides a series of example 271 

analogues to the basic system archetypes discussed in Table 1.  In this case, rather than 272 

describing changes to a bank account, or population, the equations describe changes in the area 273 

of a circle, as expressed in changes to the radius of that circle.  We visualize this extensive 274 

process as changes in the extent of the circle over time, which we depict in the final column as a 275 

series of nested circles that depict the circle’s growth through time (numbers in each graph show 276 

connections to the aspatial archetypical behavior over time).   277 

                                                                                                                                                       
et al. 2004).  Under the same line of thinking, we also do not consider discrete event modeling (such as spatial 
Poisson processes; Cox and Isham 1980) in the spatial context. 
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While BenDor and Metcalf ‘s (2006) study of the spread of an invasive insect (Figure 1e) 278 

was an inherently intensive process (described below; an aging chain model determined species 279 

density in each 30m grid cell), output was primarily assessed based on the extent of species 280 

spread.  Creating rules for spread dynamics involved specifying the neighborhood into which 281 

insects could travel.  This neighborhood was partly dependent on the size of the dynamic time 282 

step chosen.  Choice of a large time step would necessitate a larger spread neighborhood, or else 283 

spread would be artificially slowed, as insects would be technically unable to move great 284 

distances in successive time steps.   285 

This issue can be seen in Figure 1e, which depicts varying possibilities in Voinov et al. ‘s 286 

(2007) Patuxent landscape model, which models water flow between surrounding grid cells, 287 

where neighborhoods consist of a) contiguous cells only, b) a larger, second ring of cells, and c) 288 

a dynamic structure where distance of flow from a cell is based on water depth.  This example 289 

illustrates the complexities of linking neighborhood size, structure, and dynamics to time step 290 

and dynamic processes modeled. 291 

 [Insert Table 2] 292 

Intensive Processes  293 

Continuous spatial processes can most easily be characterized by graph theory, the 294 

mathematical underpinning of network theory (Diestel 2006).  A graph G is a collection of set of 295 

vertices V and edges E, which define topological relationships between vertices. For a given 296 

vertex v, N(v) is the set of all neighbors of v. It is now sufficient to re-characterize space as a 297 

tessellation, where the polygons are represented by vertices and the topological connections as 298 

edges (see Figure 2). 299 

[Insert Figure 2]   300 
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Many different kinds of underlying spatial entities can be represented using a network. 301 

Figure 2(a) is representation of contiguous polygons that affect one another through their 302 

neighborhood spillovers. Similarly a regular grid translates to a near regular graph (Figure 2b).2  303 

Figure 2(c) on the other hand is representation of non-contiguous polygons. However, the 304 

processes in one of these polygons may affect its nearest neighbors, irrespective of whether those 305 

neighbors share a boundary.3 It is therefore, important to realize that contiguity does not 306 

guarantee connectivity.  Rather, connectivity is determined by the problem in question and the 307 

particular spillover effects that necessitate modeling. For example, ‘second order’ contiguity, a 308 

measure commonly used in spatial statistics, can be represented in a simple graph even though it 309 

necessitates links between polygons that are typically one link removed from each other (i.e. 310 

imagine a neighborhood constructed entirely out of your neighbors’ neighbors; see Figure 2d and 311 

note that neighboring polygons are not connected in the network). 312 

Once such network is constructed, the archetypical patterns are fairly straightforward to 313 

construct, and we can characterize the behavior of any given node Si as a function of its own 314 

dynamics, and the dynamics of its neighboring nodes SN(i), respectively. 315 

! 

dSi

dt
= f (Si,SN (i))  

316 

Temporal and Spatial Feedback 317 

In George Richardson ‘s (1999) landmark work on feedback theory, he proposes that in 318 

modeling dynamic systems, the direct or indirect influence of a system element on itself is based 319 

on contiguous temporal relationships. Spatial analysts often assign causal relationships to spatial 320 

                                                
2 A graph is said to be ‘regular’ when the ‘degree’ of all vertices (defined as the size of a given vertex’s 
neighborhood) is equal. 
3 Conversely, it may be possible that the space could be represented as clusters of disconnected components (e.g. 
isolated areas), rather than a connected graph. However, this does not affect the construction of archetypes since the 
processes in each isolated component do not affect each other, allowing us to model processes in each component 
independently. 
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behavior, but this is not possible without time.  Spatial ‘causality’ does not exist; time mediates 321 

spatial relationships, determining whether one object, affecting another across space, forms a 322 

causal influence with respect to time.  A change in a certain grid cell, for example, can only 323 

affect other, surrounding grid cells, later in time.  This means that the uni-directional causal 324 

perception in SD, which models time as an arrow moving in one direction, becomes more 325 

complex when time establishes causal relationships that form patterns across space. Using this 326 

logic, we can see the potential problems in transferring ideas of causality from time to space. 327 

This concept is fundamental to understanding feedback that occurs through space.  328 

Since time relentlessly marches forward; the past can only influence the future and not 329 

vice versa. We can consider spatial feedback to be “bidirectional,” in the sense that 330 

neighborhood relationships are more often than not, bidirectional relationships.  Unidirectional 331 

topological relationships are certainly possible and are useful in some cases, such as flow from 332 

higher elevation to lower elevation, and one-way streets (network representations allow for 333 

directed networks to be constructed). However, predominantly undirected networks represent the 334 

topological relationships between spaces, and processes at one point (or node, or cell) not only 335 

influence all of its neighbors in the next time step, but simultaneously all the neighbors influence 336 

the process at that point in that time step.  337 

It is therefore important to differentiate between concurrent dynamics and sequential 338 

dynamics; that is, determining how fast given dynamic processes occur versus how fast those 339 

processes influence surrounding neighbors (e.g. spread or diffusion). Furthermore, because the 340 

SD models are constructed on a ‘serial’ computer, it is imperative to understand the quirks of 341 

software in handling concurrency (e.g. software can number cells/nodes/points and calculate 342 
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dynamics in each sequentially, or it can move North to South and West to East calculating in 343 

order of cell/node/point position).   344 

Examples 345 

We can now characterize any of the basic spatial system archetypes listed in Table 2 346 

using arbitrary graph structures to characterize tessellations of space.  To do this, we create a 347 

random array of nodes, connected through a random graph using Netlogo 4.1, a spatial, dynamic, 348 

and agent-based modeling framework (Wilensky 1999).  A number of software tools now exist 349 

for performing network analysis, including NetLogo (developed at Northwestern University), 350 

AnyLogic (developed at XJ Technologies in St. Petersburg, Russia; Borshchev and Filippov 351 

2004; http://www.xjtek.com/), SWARM (originally developed at the Santa Fe Institute; 352 

http://www.swarm.org/), and the Recursive Porous Agent Simulation Toolkit (REPAST, 353 

originally created at the University of Chicago; Collier and North In Press 2011)   354 

Although all of these platforms enable users to create complex, spatially dynamic 355 

models, each has strengths and weaknesses regarding user-friendliness and ability to handle large 356 

models.  One advantage of model development in Netlogo is the platform’s built-in ‘system 357 

dynamics modeler,’ which translates SD models into Netlogo code.  Additionally, REPAST 358 

Simphony, an interactive, cross-platform modeling environment can also now import Netlogo 359 

models, allowing users to rapidly develop models in Netlogo (with minimal technical expertise4), 360 

and execute them in REPAST’s high performance computing environment (often necessary for 361 

large, spatial simulations).  362 

[Insert Figure 3] 363 

                                                
4 Netlogo models are relatively easy to develop compared to the JAVA programming required for traditional 
REPAST models. 
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 We begin with a simple model whereby node dynamics are uniformly defined as a single 364 

stock (Si) that slowly grows exponentially due to influence from neighboring nodes (SN(i)): 365 

€ 

Sit+1 = Sit + .001* S jt
j∈N( i)
∑  366 

Panel A of Figure 3 shows the initial network graph, randomly generated by Netlogo.  367 

The model was then run for an arbitrary period of steps, resulting in new stock values for each 368 

node, yielding Panel B of Figure 3. The nodes that are highly connected consequently receive 369 

disproportionate share of the system wide growth compared to the nodes of low degree, because 370 

of the spatial feedback. Thus, an immediate issue is the visualization associated with the stock 371 

within each node, which we decided to depict as: 372 

€ 

NodeSizei = 0.1+
Si

Avg(S j∈N ( i))
 373 

This visualization could be modified to depict actual stock sizes, although this can quickly 374 

preclude continued visualization within the same network topology (i.e. each node grows to large 375 

to show). 376 

 In our second example, we implement a simple disease spread model, commonly known 377 

as an SIR (susceptible-infected-recovered populations) model (Homer and Hirsch 2006).  These 378 

models are common in the epidemiological literature (Capasso 1993) and have been translated 379 

into the SD framework in various instances (Ritchie-Dunham 1999; Sterman 2000; Rich 2008).   380 

Like the previous example, we begin with a random graph representing connections 381 

between different nodes (e.g. road connections between neighboring towns; Figure 4a).  Within 382 

each node, an individual SIR model operates (Figure 4b), diffusing sick individuals into nearby 383 

nodes based on diffusion rate d, the number of sick individuals in the surrounding nodes (Iv; v is 384 

the neighborhood set of i.), and the number of susceptible individuals in the target node (Si). As 385 
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shown in the equation below, the diffusion rate (d) modifies the infection rate (rf ). The number 386 

of sick individuals in the target node is also influenced by the infection rate (rf) multiplied by the 387 

susceptible (Si) and infected (Ii) proportions of the population (Pi) and the rate of recovery (rr).

 

388 

€ 

Iit+1 = Iit + d
I jt

j∈N( i)
∑

Pjt
j∈N( i)
∑

+ rf
Iit
Pit

 

 

 
 
 

 

 

 
 
 
Sit − rrIit  389 

The infection (signified by squares) begins near the lower right corner (Panel C), 390 

spreading faster to more highly connected nodes (Panel D), eventually hitting the upper left 391 

corner (further away, as measured by network distance), but completely missing non-connected 392 

nodes (see pocket of nodes in lower left, and two individual nodes on right side of graph).  After 393 

the infection has swept through the network (Panel D), infected individuals begin to recover 394 

(triangles), which sweep through the network as another wave (Panel E).  An aggregate measure 395 

of the infected and recovered populations mimics classic SIR model behavior (Panel F; Sterman 396 

2000). 397 

Finally, we demonstrate a more complex example involving a dynamic network (Figure 398 

5). In many cases, dynamic networks can add nearly infinite complexity to models (see Breiger 399 

et al. (2003) and Metcalf and Paich (2005) for an exploration of the spatial-dynamics of social 400 

networks). The network representations can be easily made dynamic, simply by adding binary 401 

weights allowing us to represent links as binary connections (e.g. on/off, social connection/no 402 

social connection) that can change over time, or even as a continuum of values of non-zero 403 

weights (e.g. acquaintances, friends, good friends, spouse, etc.), which may define the strength 404 

and frequency of interaction), which is important for representations such as SIR models.  These 405 

weights can change over time either independently or conditioned on the attributes of the nodes 406 

the links connect.  407 
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For example, instituting a quarantine policy (e.g. triggered when the infected population 408 

within a node reaches > 30%) that attempts to shut down disease diffusion by eliminating links 409 

will drastically alter the spread and recovery pattern (e.g. Figure 5d.  In our example, the links 410 

are restored when the infected population proportion is less than 10% (see Figure 5e).  Therefore, 411 

the space itself co-evolves with the underlying dynamic processes, thus better representing the 412 

complex dynamics of quarantine policies and their spatial effects.   413 

Conclusions and Discussion 414 

Spatial system dynamics models are not new. However, close attention has not been paid 415 

to the representation of space in these models. Contrasting the rigorous, scientific process of 416 

defining causal mechanisms in dynamic systems, little thought seems to be given to how and 417 

why we represent space in SD models.  418 

This article pursues a unified, theoretical underpinning to inform how and why we 419 

represent space in system dynamics models.  To do this, we portray spatial processes in two 420 

different ways.  First, we can characterize a spatial process as an extensive process if we are 421 

purely concerned with its behavior at the boundary of a given space (e.g. if a product has entered 422 

a market, if a disease has entered a village, if a city has reached a certain density in a given 423 

neighborhood).  Conversely we can characterize intensive processes as processes where we are 424 

concerned with how spatial structure affects the process dynamics within the boundary.  425 

 Recent spatial-system dynamics research has articulated ‘space’ as a tessellation into 426 

regular grids (Ahmad and Simonovic 2004; BenDor and Metcalf 2006). The increasingly 427 

common, yet simple, tessellation of underlying space into grids whereby individual processes 428 

affecting one another is only one way to representation space.  Similar tessellation can employ 429 

hexagons, triangles, and other geometric shapes. However, recent research has shown that this 430 
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process is highly susceptible to artifacts of grid geometry (Chen and Pontius In Press), which is 431 

likely to go undetected in SD modeling.  It is extremely difficult to perform sensitivity analyses 432 

on grid resolution and size, particularly when spatial data is available at low spatial resolution.   433 

We argue that in order to abstract away the artifacts of this tessellation, we should instead 434 

view spatial interactions as they occur across a topological network that defines the underlying 435 

structure of space.  By articulating space through networks, we can abstract away arbitrary grid 436 

representations and more rigorously (and easily) study how models are affected by particular 437 

spatial representations.   438 

The weighted network model that we discuss in our final example endows attributes to 439 

both nodes and links, allowing us to model the co-evolution of space alongside dynamic disease 440 

processes. This contrasts with raster based SD models, where spatial pattern is determined by 441 

collecting the homogenous values of the processes within a grid, requiring that the underlying 442 

spatial structure remains invariant. The network representation of space treats the spatial 443 

relationships themselves as dynamic and therefore allows for changes in the local spatial 444 

structure affecting the global process dynamics. 445 

Networks also facilitate construction and use of irregular tessellations of space, 446 

accommodating diverse spatial representations, including raster and vector models of landscapes, 447 

social connections and networks, and diffusion vectors.  Under a network representation, grids 448 

can be represented as a regular graph (on a torus5) or a near regular graph (on a plane; such as 449 

Figure 2b).  Polygons are intuitive for depicting heterogeneous spaces, and are the standard 450 

representation of political boundaries such as cities, counties and countries. Similarly, lines are 451 

intuitive representation of geographical phenomena such as rivers, or infrastructure such as roads 452 

and water networks. Non-contiguous regions can have spillover effects on their distance-based 453 
                                                
5 This could be used if edge effects are particularly problematic.  



 

 21 

neighbors. Even in contiguous regions, spillover effects may be due to second-order 454 

neighborhood relationships or relationships that vary in strength (weighted relationships).  All 455 

these common issues and concerns over spatial characterization can be unified under standard 456 

network topology.  457 

Building on years of visualization research in aspatial SD (and other fields, including 458 

computer graphics; Dykes 1997), future research should also explore spatial-dynamic 459 

visualization techniques.  Extensive processes result in archetypical spatial patterns such as 460 

linear growth and oscillations.  In Table 2, we depict examples of very simple archetypical 461 

spatial behavior and potential modes of visualization. However, intensive processes are not, in 462 

our experience, easily amenable to such visual representations. Extending models spatially 463 

means abandoning common, 2-D graphical visualizations of the behavior of system elements.  464 

Rather, methods and software need to be developed for exploring 4-D or 5-D (3-dimensions, 465 

time, and value) representation of maps and networks.  466 

 As the system dynamics method evolves and becomes more sophisticated, strong theories 467 

informing model spatialization and the spatial-dynamic modeling process will become 468 

increasingly important.  Many of the considerations that currently introduce rigor into the SD 469 

modeling process, including the use of historical behavior as reference mode information, 470 

dynamic hypothesis creation, and iteration in the model construction process, have spatial 471 

analogues.  The same rigor should be used in 1) determining spatial representations (zonal, 472 

gridded, vector, network, etc.), 2) thinking through archetypical spatial processes (e.g. density 473 

dependent growth and resulting diffusion; BenDor and Metcalf 2006).  Expanding the scientific 474 

basis of SD into the spatial realm will enrich both the SD and spatial science and enable 475 

modelers to create more accurate, useful, and usable spatial-dynamic models. 476 

477 
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Table 1: Examples of Non-Spatial Systemic Archetypes (k=constant or adjustment time [ki, ko, 628 

kR, kS = inflow, outflow, R-related, and S-related constants, and, S, R=stocks, C=goal, carrying 629 

capacity, or ‘normal condition’ [Cr=R-related goal or normal condition]) 630 

Systemic Archetype Governing Equations Causal Loop Diagram 
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Table 2: Examples of spatial systemic archetypes where patterns are specified for change in the 633 

area of a circle (not the radius; k=constant or adjustment time [ki, ko, kR, kS = inflow, outflow, R-634 

related, and S-related constants, and, S, R=stocks, C=goal, carrying capacity, or ‘normal 635 

condition’ [Cr=R-related goal or normal condition]) 636 

 637 
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Figure 1: Examples of Spatial Representation in System Dynamics Models.   641 
 642 
Panel A: Local spatial spread zones in Rich (2008) 
model of South American Foot-and-Mouth Disease 
spread.   

Panel B: Wils (1974) zonal extension of the Forrester 
(1969) Urban Dynamics model.   
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Fig. 4. Evolution oflocal spatial spreadin the Durand–Mahulmodel. (a) Initialcontrol zones at timet = 0. (b) Expansion ofcontrol zones at timet = 1

 
 

Panel C: Ford (2009) model of water flowing through a 
drainage basin.   

Panel D: Spatial Modeling Environment (SME) 
implementation of SD models in each grid cell (Maxwell 
and Costanza 1997b). 
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Panel E: BenDor and Metcalf (2006) invasive species 
spread (Emerald Ash Borer) model, implemented in 
SME. 
 

Panel F: Hydrologic routing schemes used to model 
water moving (a) from one cell to the next one, (b) over 
several cells in one time step, and (c) under variable path 
length algorithm, the amount of water in the donor cell 
determines how far it travels.  From Voinov et al. (2007) 
Patuxent watershed landscape model. 

Map 3: Dynamic Land Use Map
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Figure 2: Network Representations of Space 645 
 646 
Panel A: Network representation of complex, non-uniform 
polygon map (Columbus, Ohio neighborhoods; Anselin 
2003) 

Panel B: Nearly ‘regular’ graph as network 
representation of a grid – each node is equally connected 
to all contiguous neighbors 

 

 
Panel C: Non-contiguous neighborhood connections 
among spatially disconnected parcels. 

Panel D: Example of ‘second order’ connections, where 
polygons are connected to all neighbors of their 
neighbors.  Note that the number of connections have 
increased geometrically from that of Panel A.  
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Figure 3: Intensive Process Examples on Random Networks.  Panels A-B: Size indicates each 651 
node’s relative stock size as determined from the size of the stocks in connected nodes.  652 
 653 
Panel A: Exponential Growth Initialization Panel B: Exponential Growth Results 

  
 654 

655 
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Figure 4: Network Representation of SIR Model.  Shapes determine dominant type of 656 
population; circles indicate susceptible (Panel A), squares indicate infected, and triangles 657 
indicate recovered populations that dominate the node.   658 
 659 
Panel A: SIR Model Initialization Panel B: Classic SIR SD Model (Sterman 2000) 
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Panel C: SIR Model (Timestep = 10) Panel D: SIR Model (Timestep = 20) 

  
Panel E: SIR Model (Timestep = 30) Panel F: Aggregate dynamic pattern of total population 

(all nodes) 
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Figure 5: Dynamic Network Representation of SIR Model. Shapes determine dominant type of 663 
population (size determines relative number); circles indicate susceptible, squares indicate 664 
infected (infection origin noted with ‘X’), and triangles indicate recovered populations that 665 
dominate the node. 666 
 667 
Panel A: SIR Model Initialization Panel B: Classic SIR SD Model (Sterman 2000) 
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Panel C: SIR Model (Timestep = 20) Panel D: SIR Model (Timestep = 30) 

  
Panel E: SIR Model (Timestep = 40) Panel F: Aggregate dynamic pattern of total population 

(all nodes) 
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