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Abstract 8 
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while vegetation and isolation have more local impact on energy intensity, urban porosity and roughness 12 

length have consistent spillover effects on building electricity usage intensity in Chicago. Additionally, 13 
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 32 

1. Introduction 33 

 34 

Energy use in buildings is known to be one of the major sources of greenhouse gas (GHG) 35 

emissions from cities, and most of the emissions are from building operations (Norman, 36 

MacLean, and Kennedy 2006; Swan and Ugursal 2009; Ramesh, Prakash, and Shukla 2010). In 37 

developed countries, energy consumption in buildings has exceeded other major sectors, such as 38 

transportation and industrial use (Pérez-Lombard, Ortiz, and Pout 2008; Rode et al. 2014). For 39 

instance, in the United States, about 39% of total energy is consumed in residential and 40 

commercial buildings, and the building sector has become the largest energy consumption sector 41 

(EIA 2018). Meanwhile, a growing interest in the sustainability of energy resources in major 42 

metropolitan areas is apparent throughout the world. Although building energy efficiency and 43 

renewable energy polices at the metropolitan level are pervasive across the United States and are 44 

somewhat effective to date (Wedding and Crawford-Brown 2007), opportunities of future energy 45 

efficiency may be enhanced if the design of the built environment and the resulting urban form 46 

are also considered. 47 

Previous studies on building energy consumption by planning scholars mainly focus on the 48 

effects of occupant behavior (e.g., Lutzenhiser 1992; 1993); the adoption and diffusion of 49 

energy-efficient technologies (e.g., Andrews and Krogmann 2009a;  2009b); specific city-level 50 

policies on building energy efficiency, such as benchmarking policy (e.g., Meng, Hsu, and Han 51 

2017; Hsu 2014); and urban form and development patterns (Ewing and Rong 2008; Wilson 52 

2013; Ko and Radke 2014; Redacted). A less studied area of urban building energy consumption 53 

is how building energy use intensity (EUI) pattern varies spatially, as well as how this variation 54 
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is associated with demographic, socioeconomic, structural, as well as urban form and 55 

geomorphometry1 factors. Empirically modeling building energy use intensity (EUI), measured 56 

by building energy consumption per square foot, is particularly relevant since it is a direct 57 

measure of building energy performance in energy management practice. Additionally, 58 

identifying factors that affect residential energy performance at the neighborhood level would 59 

potentially provide spatially targeted residential energy management and efficiency policy, 60 

which can be coordinated with urban land-use planning and design. 61 

This study aims to explore the spatial complexity of residential EUI at the neighborhood scale to 62 

shed light on the role of urban form and geomorphometry on residential energy efficiency. We 63 

first review current literature on factors affecting residential energy consumption, especially 64 

urban form and geomorphometry relevant determinants. We present our data collection and 65 

coding, urban form and geomorphometry measures, as well as spatial regression methods. We 66 

then present the results for the study area in Chicago and set these in the context of existing 67 

literature. In addition, we discuss the limitations of this study. Finally, we conclude with 68 

potential policy implications. 69 

 70 

2. Prior research  71 

 72 

A high degree of consensus emerges among existing studies on disaggregated residential energy 73 

consumption studies that larger housing units, in terms of floor area or volume, consume more 74 

energy, which is consistent for both heating and cooling (Mardookhy et al. 2014; Filippín, 75 

Ricard, and Flores Larsen 2013; Redacted; Perez-Lombard 2008). Housing type also plays an 76 

important role, as detached single-family units tend to consume more energy than attached multi-77 
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family units (Jones, Fuertes, and Lomas 2015; Redacted; Min, Hausfather, and Lin 2010). In 78 

addition, old and poorly insulated dwelling units often consume more energy (Catalina, Virgone, 79 

and Blanco 2008; Redacted; Filippín, Ricard, and Flores Larsen 2013; Min, Hausfather, and Lin 80 

2010; Redacted; Chen, Matsuoka, and Liang 2017; Estiri 2015). Besides physical characteristics, 81 

demographic correlates of building energy consumption that have been identified by previous 82 

literature include income, tenure type, household size, and the existence of elderly residents 83 

(Jones, Fuertes, and Lomas 2015; Redacted; Ewing and Rong 2008; Estiri 2015; Redacted; Chen, 84 

Matsuoka, and Liang 2017; Chen, Wang, and Steemers 2013). 85 

The relationship between urban density and energy consumption have traditionally been limited 86 

because of paucity of data.. Larivière and Lafrance (1999) modeled the relationship between 87 

annual electricity consumption per capita and urban density using a sample at the city level and 88 

conclude that cities with higher density use less electricity per capita. However, the effect is 89 

much larger on gasoline consumption (Larivière and Lafrance 1999), since there are other 90 

important factors at city level, other than density, determine electricity consumption at the city 91 

level. Cooper et al. (2001) examined the tradeoffs of densification for both stationary 92 

(residential) and mobile (transportation) energy use in Belfast and corroborated that corridor-93 

based densification land use policy can achieve significant reductions in mobile energy 94 

consumption and modest reductions in stationary energy usage linked to residential layout 95 

design. A widely cited study by Holden and Norland (2005) affirmed that housing density in 96 

residential areas is negatively associated with household energy consumption in eight residential 97 

areas in Greater Oslo Region, while controlling other important covariates including housing 98 

type.  99 
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In recent years, researchers have been increasingly interested in evaluating how various urban 100 

form elements affect residential energy consumption (Ko and Radke 2014; Wilson 2013; Ko 101 

2013; Lee and Lee 2014; Redacted; Chen, Matsuoka, and Liang 2017; Quan et al. 2014); most of 102 

these studies corroborate that urban form and surrounding land use play a moderate but 103 

important role in influencing building energy consumption (Hsu et al. 2017; Steemers 2003; 104 

Redacted). These studies have identified urban form features of residential developments, such 105 

as neighborhood density, green space, tree canopy, street configuration, and street aspect ratio2 106 

are closely related to household energy consumption (Ko and Radke 2014; Wilson 2013; Ko 107 

2013; Lee and Lee 2014; Redacted; Chen, Matsuoka, and Liang 2017). The most consistent 108 

connection between land use features and building energy consumption in the literature is the 109 

presence of urban green space. Relevant studies also documented the positive benefits of urban 110 

parks and gardens on urban temperatures, as well as heat island effects (Bowler , Knight, and 111 

Pullin 2010; Steeneveld et al. 2011) and building energy consumption (Ko 2013). Some existing 112 

studies have identified the macro-level urban form, such as density and compactness, is generally 113 

associated with low heating loads in winter for buildings (Høyer and Holden 2003; Rode et al. 114 

2014). Chen et al. (2017) verified that buildings in a subtropical climate should be clustered to 115 

maximize the inter-building shadow while increasing non-built land use percentages in the 116 

adjacent areas, so as to reduce household energy usage. Additionally, Redacted, Hsu et al. 117 

(2017), Kontokosta and Tull (2017), Scofield (2014), and Quan et al. (2015) have claimed that a 118 

key variable that is missing from existing research is solar insolation for buildings. 119 

Despite the resurgence in research attention that is currently devoted to the relationship between 120 

urban form and building energy consumption, this relationship is still unclear. Existing research 121 

mainly focuses on electricity consumption (Jones, Fuertes, and Lomas 2015; Ko and Radke 122 
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2014; Wilson 2013; Redacted); there has been few studies that explore the natural gas 123 

consumption in winter, which is mainly used for housing heating. Moreover, most previous 124 

studies have ignored potential spatial autocorrelation in building energy consumption of different 125 

neighborhoods (e.g., Chen et al., 2017). Factors that affect sub-municipal variations in residential 126 

EUI are not well established. In addition, there have been few studies that analyze the effects of 127 

building energy consumption by using urban geomorphometry, which has already been identified 128 

in the previous literature to be a significant determinant of solar insolation and natural ventilation 129 

(Coseo 2013; Chun and Guldmann 2014; Shi, Katzschner, and Ng 2017; Nakata-Osaki, Souza, 130 

and Rodrigues 2018). Further studies are needed to examine the net effects of solar radiation, 131 

heat island effects, and neighborhood ventilation (Ko 2013; Redacted; Chen, Matsuoka, and 132 

Liang 2017). 133 

It is also worthwhile to note that research in this field are conducted at multiple scales, from the 134 

disaggregated household or parcel level (e.g., Ko and Radke 2014; Wilson 2013; Redacted) to 135 

the largely aggregated city or county level (Lee and Lee 2014). Meanwhile, factors influencing 136 

residential energy also exist at various scales, from the occupancy pattern at the household level 137 

to the architectural style and construction techniques associated with a particular subdivision to 138 

the microclimate conditions of neighborhoods and regions3. In this study, in order to capture the 139 

within city spatial effects and better quantify some neighborhood-level urban form induced 140 

microclimate features (e.g., ventilation, insolation) while controlling the important occupancy 141 

pattern and building covariates, we pick census tract as our unit of analysis. 142 

Therefore, this study aims to advance the empirical understanding of how urban form and 143 

geomorphometry at the census tract level shape residential energy use intensity (EUI). We 144 

attempt to explain the spatial variations in residential electricity and gas EUI in terms of urban 145 
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radiation intensity, neighborhood ventilation, vegetation density, and associated microclimate 146 

after controlling for socioeconomic and demographic factors, housing type, and building 147 

characteristics. Based on monthly energy usage data for different energy sources, three-148 

dimensional building dataset, Digital Elevation Model (DEM), Landsat TM satellite image, and 149 

U.S. Census demographic information, we attempt to single out the importance of urban form 150 

and geomorphometry in understanding energy usage patterns. This study also aims to better 151 

understand the other spatial determinants of tract-level residential energy consumption patterns 152 

and to elucidate spatially explicit energy conservation strategies. 153 

 154 

3. Data and methods 155 

 156 

3.1. EUI data 157 

We obtained monthly breakdown of energy consumption data for the year 2010 from the City of 158 

Chicago, which is among the select few cities that have made building energy consumption data 159 

available to public in recent years.  Chicago is the most populous city in Illinois, United States, 160 

which is situated in the “hot summer humid continental” climate zone with warm, often humid 161 

summers and cold winters. The building energy consumption dataset form Chicago City Data 162 

Portal4 contains 67,051 records grouped at the census block level including several different 163 

types of energy users (e.g., single-family, multi-family, industrial, commercial, and municipal 164 

users). We only extracted information on energy usage for residential use, then aggregated 165 

annual and seasonal electricity consumption and gas consumption data to census tracts. We 166 

aggregated the energy consumption data to census tract level since this approach would provide a 167 

continuous surface to evaluate the spatial variations of energy consumption intensity across the 168 
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city (Chang, Parandvash, and Shandas 2010). Additionally, we were able to integrate several 169 

important variables such as income, housing characteristics and occupancy, which can be 170 

gathered at this level from U.S. census. The response variables of interest in this study include 171 

annual electricity EUI, summer electricity EUI, and winter gas EUI5.  172 

 173 

3.2. Urban form and geomorphometry measures 174 

As mentioned in the previous section, although existing studies have revealed the relationship 175 

between urban geomorphometry variables (e.g., roughness length), solar insolation, and 176 

mircoclimate (Gál and Unger 2009; Redacted; Coseo and Larsen 2014; Chun and Guhathakurta 177 

2015; Chun and Guldmann 2014), few has extended this relationship to building energy 178 

consumption. This study attempts to examine this linkage by including three variables that 179 

measure urban porosity, wind circulation, and solar insolation respectively by using three-180 

dimensional urban data. 181 

The first geomorphometry variable is urban porosity, which is defined as the ratio quantifying 182 

the volume of air in outdoor urban spaces (dotted areas in Figure 1) within the urban canopy 183 

layer6. It directly measures how penetrable a defined urban area is for the airflow (Gál and 184 

Unger, 2009). We constructed a 3D building database using data from Chicago City Data Portal 185 

and Open Street Map and calculated this variable using a GIS extension in ArcGIS10.5 186 

(Redacted). The equation defining urban porosity is (Redacted; Gál and Unger, 2009): 187 

𝑃𝑃ℎ−𝑣𝑣𝑣𝑣𝑣𝑣 = 𝐴𝐴𝑇𝑇ℎ𝑈𝑈𝑈𝑈𝑈𝑈−𝑉𝑉𝐵𝐵
𝐴𝐴𝑇𝑇ℎ𝑈𝑈𝑈𝑈𝑈𝑈

      (1) 188 

 189 

where Ph-var is the urban porosity index, hUCL is the height of the urban canopy layer, VB is the 190 
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total volume of buildings7, and AT is the total plot area. Subsequently, the average value for Ph-var 191 

is calculated for each census tract in our sample. 192 

 193 

Fig. 1 The concept of urban porosity 194 

The second geomorphometry variable we included in this study is roughness length, which is 195 

widely used in urban climate studies that measure the wind circulation of the 3D shape of urban 196 

environment (Shi, Katzschner, and Ng 2017). Generally, a high roughness length value indicates 197 

a low wind speed (Redacted; Gál and Unger, 2009). Similar to the urban porosity index, the 198 

roughness length index was calculated using a GIS extension in ArcGIS10.58 (Redacted). The 199 

roughness length is computed as follows (Figure 2):  200 

𝑍𝑍𝑜𝑜 = 𝐻𝐻(1 − 𝜆𝜆𝑃𝑃0.6) 𝑒𝑒−
�0.4
𝜆𝜆𝜆𝜆        (2) 201 

where 𝜆𝜆𝜆𝜆 =  𝐴𝐴𝜆𝜆 𝐴𝐴𝐴𝐴 �  and 𝜆𝜆𝑃𝑃 =  𝐴𝐴𝑃𝑃 𝐴𝐴𝐴𝐴 � . 202 
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 203 

Fig. 2 Illustrated parameters for the roughness length calculation   204 

 𝑍𝑍𝑜𝑜is the roughness length index. H is volumetrically averaged building height. is the frontal 205 

area ratio, which is measured as the proportion of total frontal area9 of buildings (AF) inside a 206 

plot area of the total plot area (AT). Building coverage ratio (𝜆𝜆𝑃𝑃) is calculated using building 207 

coverage area (AP) divided by the total plot area (AT).  208 

Another geomorphometry variable we used in this study is solar insolation10 intensity (Hsu et al. 209 

2017) . This variable was calculated using the area radiation analysis tool in ArcGIS10.5 solar 210 

radiation toolbox. We created a building height raster data of Chicago6 and joined it to the digital 211 

elevation model (DEM) of Cook County from U.S. Geological Survey and used the newly 212 

generated DEM to calculate the area solar radiation in summer, winter, and the whole year. 213 

Furthermore, we calculated the solar insolation intensity index, dividing the total radiation by 214 

total volume of buildings. Then we extracted the residential land from the radiation map output 215 

by using the land use inventory from Chicago Metropolitan Agency for Planning and calculated 216 

the annual and seasonal solar radiation intensity index for residential land use.  This insolation 217 

accounts for shadows of neighboring buildings and other objects. 218 

As indicated in previous literature, the presence of urban green space and vegetation cover has 219 

been identified as an important factor that moderates urban heat island effects (Chun and 220 
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Guldmann 2014;  Chun and Guhathakurta 2015), which could in turn affect building energy 221 

consumption (Redacted; Wilson 2013; Ko 2013; Ko and Radke 2014). In this study, the 222 

normalized difference vegetation index (NDVI) was also calculated, which has been used 223 

extensively to measure vegetation cover in urban environments12. NDVI is calculated from the 224 

amount of reflectance observed in two bands or portions of the electromagnetic spectrum, 225 

namely, the near infrared (Landsat Band 4) and red (Landsat Band 3). The summer, winter, and 226 

annual NDVI were calculated using Landsat TM satellite images in the year 2010 and 227 

ArcGIS10.513. Thereafter, the average value of the summer, winter, and annual NDVI for each 228 

census tract was obtained. We also included population density, building orientation14, and 229 

distance to large water bodies as urban form related variables in this study. 230 

 231 

3.3. Variable coding, descriptive statistics, and spatial patterns 232 

In addition to urban form and geomorphometry variables, a dataset from the US Census was 233 

assembled at the tract level for building age, housing occupancy and tenure status, and household 234 

socioeconomic and demographic factors (e.g., household size and income, and the presence of 235 

elderly residents) to account for other factors that influence residential energy consumption, 236 

which have been identified in the previous literature (see Table 1 for descriptive statistics). The 237 

annual electricity usage intensity refers to the annual residential electricity usage per square 238 

footage by census tract in the year 2010, in the unit of kWh/ft2. The summer electricity usage 239 

intensity was calculated using the household electricity data from June 2010 to September 2010. 240 

Accordingly, winter gas consumption intensity was derived from the data in January, February, 241 

March, and December of 2010. Subsequently, the unit of winter gas consumption intensity was 242 
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converted to kWh/ft2 for comparison. Not surprisingly, all the EUI variables are right-skewed. 243 

Therefore, they were transferred to the natural log form. 244 

 245 

Table 1 246 
Descriptive statistics (N=780). 247 

Variables Mean SD Min. Max. Source 

Dependent variables      
Annual electricity usage intensity 
(kWh/ft2) 5.66 1.90 1.85 26.11 City of Chicago Data Portal 
Summer electricity usage 
intensity (kWh/ft2) 2.29 0.84 0.71 12.88 City of Chicago Data Portal 
Winter gas usage intensity 
(kWh/ft2)a 19.49 4.30 5.84 44.16 City of Chicago Data Portal 
Independent variables      
Proportion of single-family 
square footage for electricityb 0.41 0.29 0 1 City of Chicago Data Portal 
Proportion of multifamily houses 
(with <7 households) for 
electricity 0.49 0.27 0 1 City of Chicago Data Portal 
Proportion of multifamily houses 
(with 7+ households) for 
electricity 0.11 0.18 0 1 City of Chicago Data Portal 
Proportion of single-family 
square footage for gas 0.41 0.29 0 1 City of Chicago Data Portal 
Proportion of multifamily houses 
(with <7 households) for gas  0.48 0.27 0 1 City of Chicago Data Portal 
Proportion of multifamily houses 
(with 7+ households) for gas  0.11 0.19 0 1 City of Chicago Data Portal 
Proportion of housing units built 
before 1940 0.48 0.21 0 0.93  
Proportion of housing units built 
before 1940-1959 0.24 0.16 0 0.84 

U.S. Census Bureau, 2010 five-year 
American Community Survey 

Proportion of housing units built 
before 1960-1979 0.15 0.12 0 0.76 

U.S. Census Bureau, 2010 five-year 
American Community Survey 

Proportion of housing units built 
before 1980-1999 0.07 0.08 0 0.64 

U.S. Census Bureau, 2010 five-year 
American Community Survey 

Proportion of housing units built 
after 2000 0.06 0.09 0 0.66 

U.S. Census Bureau, 2010 five-year 
American Community Survey 

Housing occupancy rate 0.87 0.08 0.38 0.98 
U.S. Census Bureau, 2010 five-year 
American Community Survey 

Average household size (persons) 2.68 0.66 1.28 4.37 U.S. Census Bureau, 2010 Summary File 1 
Proportion of household with 
elderly residents (age>65) 0.21 0.11 0 0.58 U.S. Census Bureau, 2010 Summary File 1 
Median household income 
(1000$) 47.56 22.57 10.22 151.25 

U.S. Census Bureau, 2010 five-year 
American Community Survey 

Homeownership rate 0.44 0.20 0.04 0.94 U.S. Census Bureau, 2010 Summary File 1 

Population density (persons/acre) 29.04 20.10 0.61 208.98 
Calculated using U.S. Census Bureau, 2010 
Summary File 1 
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Building orientationc 0.60 0.27 0 1 

Calculated using building shapefile complied 
from Chicago Data Portal and Open Street 
Map, and ArcGIS 

Distance to Lake Michigan 
(miles) 4.00 2.44 0.09 10.89 

Calculated using U.S. Census Bureau, 2010 
census tract shapefile and ArcGIS 

Annual insolation per building 
volume (106 WH/m3) 6.15 2.94 0.08 22.62 

Calculated using multiple datasetsd and Arc 
GIS 

Summer insolation per building 
volume (106 WH/m3) 3.11 1.49 0.04 11.46 

Calculated using multiple datasets and 
ArcGIS 

Winter insolation per building 
volume (106 WH/m3) 0.17 0.14 0.01 2.38 

Calculated using multiple datasets and 
ArcGIS 

      

Annual vegetation index (NDVI) 0.12 0.04 0.01 0.26 
Calculated using Landsat TM satellite 
image and ArcGIS 

Summer vegetation index 
(NDVI) 0.16 0.04 0.03 0.36 

Calculated using Landsat TM satellite 
image and ArcGIS  

Winter vegetation index 
(NDVI) 0.08 0.03 -0.02 0.20 

Calculated using Landsat TM satellite 
image and ArcGIS  

Urban porosity 0.77 0.07 0.59 0.98 
Calculated using multiple datasets and 
ArcGIS 

Urban roughness length 
 1.04 1.25 0.07 13.42 

Calculated using multiple datasets and 
ArcGIS 
 

Building Coverage Ratioe 
 0.46 0.09 0.09 0.89 

Calculated using Calculated using 
building shapefile, land use inventory 
from Chicago Metropolitan Agency for 
Planning, and ArcGIS 
 

Notes: a The original unit for gas consumption in the dataset is therm. We convert it to kWh for easy comparison.  248 
           b The square footage of each housing type associated with the electricity and gas data is different in certain 249 
tracts. Thus, we create this variable differently for electricity and gas. 250 
           c Building orientation refers to floor area weighted proportion of residential buildings that are within 15 251 
degrees of east-west orientation. 252 
                 d These datasets include building shapefile complied from Chicago Data Portal and Open Street Map, Digital 253 
Evaluation Model from U.S. Geological Survey and land use inventory from Chicago Metropolitan Agency for 254 
Planning.   255 
         e  Building coverage ratio is not used in the regression models. It is used to quantify densification scenarios in 256 
the discussion section. 257 

There exists a positive spatial autocorrelation in EUI, suggesting that residential energy 258 

consumption patterns are not randomly distributed across Chicago, but are spatially correlated 259 

(see Figure 3). Higher electricity usage can be observed in central areas of Chicago near 260 

downtown areas as well as a few of the suburbs in the northwestern and southwestern edges (see 261 

Figure 3a). Electricity and winter gas usage intensity distribution across the city show similar 262 

patterns, except for several tracts to the north of downtown and near the north edge of the city, 263 

where residential buildings may rely less on gas for heating in winter (see Figures 3b & 3c). By 264 
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overlaying the EUI map and population density map, we can observe the negative correlation 265 

between electricity EUI and population density by census tract. In addition, there exist some 266 

positive relationships between EUI and annual insolation intensity, vegetation index, and urban 267 

porosity. This makes sense because neighborhoods with higher EUI are often times located in 268 

low density areas, which are associated with more insolation and less building volume, more 269 

vegetation cover, and higher level of urban porosity. Additionally, building orientation and urban 270 

roughness do not appear to have apparent spatial relationship with EUI at the census tract level. 271 

     272 

273 



 16 
 

(d) Population density (persons/acre) (e) Building orientation  (f) Annual insolation per building volume (106 
WH/m3) 

(a) Average annual electricity usage intensity 
(kWh/ft2) 

(b) Average summer electricity usage intensity 
(kWh/ft2) 

(c) Average winter gas usage intensity (kWh/ft2) 
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(g) Annual vegetation index (NDVI)  (h) Urban porosity  (i) Urban roughness length  

Fig. 3 Spatial patterns by census tract in Chicago 
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3.4. Model specification  240 

First, the Ordinary Least Square (OLS) regression models are estimated15. The Moran’s I 241 

statistics indicate spatial autocorrelation exists in the residuals of all the electricity and gas 242 

models16.  We used Lagrange Multiplier statistics17 to further identify that spatial error model as 243 

the right model specification for spatial dependence. The Spatial Error Model (SEM) for this 244 

study is specified as follows: 245 

Ln(Y)= α +βX + ηWu+ ε                   (3)  246 

ε ~ Niid(0, σ2I)                                     (4) 247 

where Y is the EUI variable for each census tract, X is the set of explanatory variables including 248 

urban form and geomorphometry, as well as control variables of socioeconomic and 249 

demographic factors, housing type, and building characteristics. W is the spatial weight matrix, 250 

which is based on first-order queen contiguity in this instance. 251 

If the impacts of some explanatory variables affect not only the dependent variable in the 252 

reference census tract but also the dependent variable in the proximal neighboring census tracts, 253 

then the immediate neighbor influences can be captured in the model by spatially lagged 254 

independent variables. In this case, some urban form relevant variables regarding urban 255 

ventilation and vegetation might have this type of influence on building energy consumption. For 256 

instance, the urban ventilation level in a census tract may affect not only residential energy 257 

consumption in that census tract, but also residential energy consumption among neighboring 258 

census tracts. Therefore, we included spatially lagged independent variables for these urban form 259 

and geomorphometry variables in our model and estimated the OLS models. We again examined 260 

the residuals from the OLS using the Moran’s I statistic to test for spatial autocorrelation among 261 
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residuals and Lagrange Multiplier statistics as a likely clue for model selection18. Finally, we 262 

selected the Spatial Durbin Error Model (SDEM), which accounts for spatial dependence among 263 

the error terms and the exogenous interaction effect. The final model is specified as follows:  264 

Ln(Y)= α +βX +γWX’+ ηWu+ ε           (5) 265 

ε ~ Niid(0, σ2I)                                       (6) 266 

 267 
where Y is the EUI variable for each census tract; X is the set of explanatory variables including 268 

urban form and geomorphometry, as well as control variables of socioeconomic and 269 

demographic factors, housing type, building characteristics. γ  vector represents the estimates for 270 

the lagged independent variables of urban porosity, roughness length, and NDVI.  Following 271 

Call and Voss (2016), the set of predictors X’  is assumed to be a subset of the predictors X.  It is 272 

also not a requirement that spatial matrix W in equations (5) be the same, although in this study 273 

we assume a row standardized first-order queen specification for each. The models were 274 

estimated using the spdep package in R (R Development Core Team, 2014). The annual and 275 

seasonal EUI variables are tested using SEM and SDEM, respectively, including the annual 276 

electricity, summer electricity, and winter gas. 277 

 278 

4. Results 279 

 280 
The base models (SEM1, SEM2, SEM3) are spatial error models that include all the explanatory 281 

variables for the EUI dependent variables; extended models (SDEM1, SDEM2, SDEM3) include 282 

both explanatory variables in the base models and spatially lagged variables of NDVI, urban 283 
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porosity, and roughness length, which adjust for their neighboring influences on EUI (see Table 284 

2). Overall, the addition of the lagged variables can improve the model fit for the annual and 285 

summer electricity EUI models, which indicates that the urban form variables in the neighboring 286 

tracts can help explain the electricity EUI in its reference tract. This combination yields a 287 

relatively strong model fit (pseudo-R2 =0.57 and 0.65). Summer electricity usage models 288 

generally have more explanatory power than annual models, which might be explained by the 289 

fact that a larger proportion of summer electricity is used for cooling.  290 

 291 

Table 2  292 
Annual and seasonal spatial regression results. 293   

Variable  EUI (Annual 
Electricity) 

EUI (Summer 
Electricity) EUI (Winter Gas) 

 SEM1 SDEM1 SEM2 SDEM2 SEM3 SDEM3  
Proportion of single family square footage  0.217*** 0.201*** 0.275*** 0.263*** 0.127*** 0.126*** 
 (0.059) (0.057) (0.059) (0.056) (0.045) (0.045)        
Proportion of multifamily square footage 
(with 7+ households) -0.055 -0.096* -0.170*** -0.215*** -0.482*** -0.491*** 

 (0.060) (0.058) (0.059) (0.057) (0.047) (0.047)        
Proportion of housing units built before 
1940 -0.576*** -0.578*** -0.523*** -0.532*** 0.177** 0.185** 

 (0.102) (0.098) (0.102) (0.098) (0.082) (0.082) 
Proportion of housing units built 1940-1959 -0.648*** -0.676*** -0.594*** -0.610*** 0.269*** 0.272*** 
 (0.110) (0.106) (0.109) (0.105) (0.087) (0.088)        
Proportion of housing units built 1960-1979 -0.310*** -0.284** -0.263** -0.234** 0.229** 0.241** 
 (0.119) (0.114) (0.118) (0.113) (0.096) (0.096) 
Proportion of housing units built 1980-1999 -0.257* -0.268** -0.143 -0.140 -0.016 -0.020 
 (0.139) (0.137) (0.138) (0.136) (0.111) (0.112) 
Housing occupancy rate 0.556*** 0.539*** 0.683*** 0.667*** 0.266*** 0.260** 
 (0.127) (0.125) (0.125) (0.123) (0.103) (0.105) 
Average household size  0.064*** 0.085*** 0.054** 0.073*** 0.061*** 0.066*** 
 (0.022) (0.020) (0.022) (0.020) (0.018) (0.018) 
Proportion of household with elderly 
residents (age>65) -0.046 -0.002 -0.135 -0.101 0.119* 0.123* 

 (0.089) (0.087) (0.088) (0.086) (0.071) (0.071) 
Median household income  -0.0004 -0.001 0.001 0.001 -0.001** -0.001** 
 (0.001) (0.001) (0.001) (0.001) (0.0005) (0.001) 
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Homeownership rate 0.071 0.038 0.070 0.049 -0.253*** -0.255*** 
 (0.088) (0.086) (0.087) (0.085) (0.071) (0.071) 
Population density  -0.0001 -0.0002 -0.0002 -0.0003 -0.0005 -0.0005 
 (0.001) (0.001) (0.001) (0.001) (0.0005) (0.0005) 
       
Building orientation -0.016 -0.013 -0.050* -0.042 0.008 0.006 
 (0.029) (0.027) (0.029) (0.027) (0.023) (0.023) 
Distance to Lake Michigan (miles) 0.009 0.010* 0.014** 0.015*** 0.004 0.003 
 (0.006) (0.006) (0.006) (0.005) (0.006) (0.006) 
Solar insolation index       
Annual insolation intensity 0.033*** 0.039***     
 (0.005) (0.005)     
Summer insolation intensity   0.062*** 0.075***   
   (0.011) (0.010)   

Winter insolation intensity     -0.035 -0.038 
     (0.051) (0.051) 
Vegetation Index       

Annual NDVI -0.984*** -1.002***     

 (0.318) (0.319)     

Summer NDVI   -1.140*** -1.127***   
   (0.247) (0.253)   

Winter NDVI     0.181 0.234 
     (0.311) (0.313)        
Ventilation index       
Urban porosity 0.075 0.142 0.036 0.108 0.168 0.176 
 (0.180) (0.184) (0.172) (0.176) (0.162) (0.164)        
Roughness length  0.030*** 0.014 0.030*** 0.013 -0.003 -0.006 
 (0.009) (0.010) (0.009) (0.010) (0.007) (0.008) 
Spatial lag term       
Lag of annual NDVI  0.682     
  (0.477)     
Lag of summer NDVI    0.097   
    (0.359)   

Lag of winter NDVI      0.554 
      (0.591) 
Lag of urban porosity  -0.950***  -0.904***  -0.295 
  (0.254)  (0.238)  (0.249) 
Lag of roughness length  0.086***  0.077***  0.021 
  (0.015)  (0.014)  (0.013) 
Constant 1.248*** 1.726*** 0.265 0.770*** 2.362*** 2.514*** 
 (0.206) (0.257) (0.203) (0.252) (0.172) (0.241) 
       
Observations 780 780 780 780 780 780 
Log Likelihood 213.180 235.384 220.103 241.651 384.932 386.759 
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Akaike information criterion (AIC) -384.361 -422.768 -398.205 -435.302 -727.864 -725.517 
Pseudo-R2 0.544 0.569 0.630 0.650 0.591 0.593 
Wald Test  94.471*** 31.165*** 88.882*** 25.960*** 145.630*** 128.999*** 
Likelihood ratio (LR) Test  55.119*** 22.974*** 47.011*** 18.230*** 101.399*** 90.322***        
Notes: (1) Standard errors in parentheses. 
           (2)*p<0.1,**p<0.05,***p<0.01. 
            (3) In each instance, ‘‘Lag’’ refers to a spatial lag computed using a row-standardized first-order Queen 
spatial weights matrix. 
 

 

 294 

4.1. Impacts of urban form and geomorphometry factors 295 

The regression results reveal the effects of tract-level urban form and geomorphometry variables 296 

on residential EUI. Roughness length, which is negatively associated with the intensity of wind 297 

circulation, seems to have a significant effect on electricity usage intensity (p < 0.01 in SEM1 298 

and SEM2) when other important covariates have been controlled for. The results indicate that, if 299 

the roughness length index of a certain census tract is reduced by 10 (approximately from the 300 

highest to the lowest value in Chicago), its annual and summer electricity EUI would be reduced 301 

by 30%. This makes sense given the fact that Chicago has hot and humid summers. Whereas in 302 

the anticipated direction, this effect is not statistically significant for winter gas usage intensity 303 

(p > 0.1 in SEM3 and SDEM3). Similarly, solar radiation intensity is significantly related to 304 

electricity usage intensity (p < 0.01 in SEM1, SDEM1, SEM2, and SDEM2) as excessive solar 305 

insolation might increase the cooling loads in summer, especially in low-density residential 306 

developments. According to the results of Model SDEM2, if the summer solar insolation 307 

intensity index of a certain census tract is increased by 10 WH/m3 (approximately from the 308 

lowest to the highest value by census tract in Chicago), its summer electricity EUI would be 309 

increased by 75%, which is a considerable change. Nevertheless, the opposite effect of solar 310 

insolation is not significant for winter gas usage intensity (p>0.1 in SEM3 and SDEM3). As 311 

expected, NDVI, which measures the average density of vegetation in each tract, is significantly 312 
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related to electricity usage intensity (p < 0.01 in SEM1 and SEM2) but not with gas usage 313 

intensity in winter. An increase of NDVI by 0.1, all things being equal, would lead to a decrease 314 

of summer electricity EUI of a census tract by 11.4%. Additionally, the results show no 315 

statistically significant association between neighborhood porosity and EUI for both electricity 316 

and gas consumption. The results reveal that distance to large water bodies (Lake Michigan) has 317 

positive effects on summer electricity usage intensity, which indicates that the tract’s geographic 318 

proximity to Lake Michigan would significantly reduce residential electricity intensity in 319 

summer. After controlling other urban form and geomorphometry factors related to urban 320 

ventilation, solar radiation, and vegetation level, building orientation does not appear to be 321 

significant predictors of EUI. Population density is not significantly related to EUI either, which 322 

is consistent with previous findings as studies have revealed that, when it comes to energy 323 

intensity (e.g., electricity consumption/ft2), population density is not significant (Chen, 324 

Matsuoka, and Liang 2017), although  a high population density is associated with a low 325 

household energy usage (Ko and Radke 2014; Ewing and Rong 2008). 326 

Extended models (SDEM1-3) in this study include some spatially lagged independent variables, 327 

which adjust for neighboring influences on EUI. The porosity level in a specific tract, for 328 

instance, may be similar with the porosity level in neighboring counties (spatial clustering), and 329 

may also be related with EUI in neighboring counties (spatial spillover effects). The spatially 330 

lagged porosity is negatively related to the electricity usage intensity in the neighboring tract. 331 

The porosity in the neighboring tracts can potentially reduce both annual and summer electricity 332 

usage intensities, a large proportion of which is used for cooling: an increase of porosity level in 333 

the neighborhood tracts by 0.1 would lead to a decrease of annual and summer electricity EUI in 334 

the reference tract by 9.5% and 9.0%, respectively.  Nonetheless, no statistically significant 335 
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associations between spatially lagged porosity and winter gas usage intensity exist. A significant 336 

positive association has been found for the spatially lagged roughness length and electricity EUI, 337 

which indicates that high levels of wind circulation in the neighboring tract can potentially 338 

reduce the electricity usage intensity in the reference tract (p < 0.01 in SEM1 and SEM2).  As the 339 

lagged roughness length is controlled for, the roughness length itself becomes insignificant, 340 

which indicates that the wind circulation level is operating at a different scale than census tract. 341 

Again, no significant lagged effects of roughness length on winter gas usage intensity are found. 342 

Additionally, little evidence in our results indicates that NDVI have neighboring effect on EUI as 343 

the lagged NDVI is not significant in either electricity or winter gas usage models. 344 

 345 

4.2. Impacts of other factors 346 

In addition to urban form and geomorphometry variables, housing type, building age, ratio of 347 

occupied housing units, and household size are consistent determinants of EUI at the tract level, 348 

which coincides with the existing theory. A nuanced finding in the study is that, when 349 

controlling other important covariates, census tracts with a high percentage of old buildings are 350 

associated with a low electricity usage intensity, which might be attributed to less usage of air 351 

conditioning and other high-consumption appliances (Baker and Rylatt 2008; Chong 2012; 352 

Tiwari 2000). On the contrary, in the winter gas intensity model, tracts with a high percentage of 353 

old buildings are associated with a high gas usage intensity, which is consistent with the existing 354 

theory that older homes generally consume more energy for home heating because of insufficient 355 

thermal insulation. Additionally, tracts with a high proportion of elderly residents (age > 65) are 356 

associated with high gas usage intensities, probably due to the fact that they generally spend 357 

more time at home and also may need more natural gas for home heating in winter as elderly 358 
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residents commonly require warmer ambient temperatures to feel comfortable. Interestingly, the 359 

median income is not a significant predictor of electricity usage intensity. Unexpectedly, tracts 360 

with a high median income are associated with a low gas usage intensity (p < 0.05 in SEM3). A 361 

likely explanation is that the thermal insulation level of the residential buildings in high income 362 

tracts is generally better, thereby reducing gas usage intensity. Finally, the results suggest a 363 

significant low gas usage intensity in tracts with highly privately owned dwelling units, which is 364 

consistent with the findings from other studies (e.g., Ndiaye and Gabriel 2011). 365 

 366 

5. Discussion 367 

 368 

There are still several limitations in this study. First, our data are aggregated to the census tract 369 

level, which means it is not possible to control for the detailed household level characteristics or 370 

individual behavior, or to generalize to the individual or the household level (Robinson 2011; 371 

Call and Voss 2016). In addition, the process of aggregating data will inevitably cause some loss 372 

of information or bias.  Modifiable areal unit problem may be another issue; inferences drawn in 373 

this study may differ if the spatial unit changes, for example using a finer spatial resolution such 374 

as the census block. Nevertheless, several control variables (e.g. building age, and tenure type) 375 

are unavailable at finer spatial scale. Finally, the external validity of this study is still limited as it 376 

focuses on a single city in a single climate zone. Future research should evaluate various urban 377 

forms under various climates to obtain urban form strategies that produce net benefits for 378 

building energy efficiency in each climate (Ko 2013). In addition, future studies could include air 379 

temperature data at a very fine geographic scale, which is a more direct measure of urban heat 380 
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island effect, to explore the pathways in which various urban forms and elements shape building 381 

energy efficiency. 382 

Notwithstanding these limitations, this study contributes to the literature by establishing spatially 383 

explicit knowledge of various determinants of EUI at the census tract level, especially urban 384 

form and 3D geomorphometry variables that have not been extensively studied. Previous studies 385 

have established the linkage between urban ventilation variables (e.g., urban porosity, and 386 

roughness length) and urban climate (Gál and Unger 2009; Redacted; Coseo and Larsen 2014; 387 

Chun and Guhathakurta 2015; Chun and Guldmann 2014). Our study extends this linkage to the 388 

EUI in residential buildings, and also reveals their spatial spillover effects. 389 

In consideration of building energy efficiency, this study validates that the consequence of 390 

compact development may be more complicated than generally expected. Efforts to examine the 391 

pros and cons of compact residential development must comprehensively consider solar 392 

insolation intensity, vegetation amount, and ventilation level (Redacted; Ko 2013; Quan et al. 393 

2014; Quan et al. 2015). In the case Chicago, a highly compact development is generally 394 

associated with less radiation intensity per building volume, which can potentially decrease 395 

cooling EUI. On the contrary, compact residential subdivisions generally have low NDVI, 396 

thereby increasing cooling loads. Similar effects can be found in urban ventilation given that 397 

significant compact developments are associated with poor natural ventilation, which, in turn, 398 

increases cooling EUI in summer.  399 

In order to isolate these pathways through which urban densification action could affect building 400 

energy efficiency, and to explore the net effect of urban densification policy on residential EUI, 401 

we use a 3x3 grid to better illustrate the various outcomes: the center grid represents the 402 

reference tract that will experience the urban form change in terms of building coverage ratio 403 
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(BCR) ; while the building coverage ratio of 8 neighboring tracts remain unchanged to better 404 

quantify the spillover effects of the densification policy of the reference tract. For simplicity’s 405 

sake, we also assume the spatial weights of all the tracts are the same. Three densification 406 

scenarios are considered, with the BCRs of the reference tracts changed from 0.2 to 0.4, 0.4 to 407 

0.6, and 0.6 to 0.8 respectively. We use the Loess Curve Fitting method19 to trace the change of 408 

urban porosity, urban roughness length, NDVI, and isolation density associated with BCR 409 

increase of each densification scenario. Then we further quantify the annual electricity usage 410 

intensity (AEUI) change of each census tract based on the coefficients of relevant urban form 411 

and geomorphometry variables in our spatial regression results (Table 3). We do not quantify the 412 

gas usage intensity change since none of the urban form and geomorphometry variables are 413 

significant in the winter gas model. 414 

Table 3  415 
Annual Electricity Usage Intensity (AEUI) change of different densification scenarios (low, medium, 416 
high). 417 

 

NDVI induced 
EUI change 
(reference tract) 

Insolation intensity 
induced EUI 
change (reference 
tract) 

Porosity induced 
EUI change 
(neighboring 
tract) 

Roughness 
length induced 
EUI change 
(neighboring 
tract) 

Total EUI 
change 
(reference tract) 

Total EUI change 
(neighboring 
tract) 

Scenario 
1(BCR:0.2-0.4) 

3.54% (1.33%, 
5.76%) 

-12.16% (-15.21%, 
-9.10%) 

0.97% (0.46%, 
1.48%) 

-0.89% (-1.20%, 
-0.59%) 

-8.61% (-
13.88%, -3.34%) 

0.08% (-0.74%, 
0.89%) 

Scenario 
2(BCR:0.4-0.6) 

5.71% (2.15%, 
9.27%) 

-18.24% (-22.82%, 
-13.66%) 

1.17% (0.56%, 
1.79%) 

1.36% (0.90%, 
1.83%) 

-12.53% (-
20.67%, -4.39%) 

2.53% (1.46%, 
3.62%) 

Scenario 
3(BCR:0.6-0.8) 

2.17% (0.82%, 
3.53%)  

-9.74% (-12.18%, -
7.29%) 

-0.34% (-0.51%, -
0.16%) 

5.19% (3.41%, 
6.96%) 

-7.57% (-
11.36%, -3.76%) 

4.85% (2.90%, 
6.80%) 

Note: 95% predication intervals in parentheses. 
 
 418 

 419 
In scenario 1 (low-density scenario), increasing the BCR by 0.2 would bring about 8.61% AEUI 420 

decrease of the reference tract basically because less insolation intensity would decrease AEUI (-421 
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12.16%); densification would decrease NDVI values, but this would only leads to 3.54% AEUI 422 

increase. In the low-density scenario, less insolation intensity level brought about by more 423 

mutual shading between buildings is the determining factor of improved AEUI; ventilation only 424 

play a minor role, as it only leads to 0.08% AEUI increase of the neighboring tract. In scenario 2 425 

(medium-density scenario), ventilation becomes much more important, as densification leads to 426 

2.53% AEUI increase of each neighboring tract because of less ventilation. This is a considerable 427 

effect since there are 8 neighboring tracts in our scenarios. Again, the AEUI improvement 428 

brought about by less insolation intensity (18.24%) is more than AEUI increase (5.74%) through 429 

less NDVI level. Thus, densification still leads to 12.53% AEUI improvement of the reference 430 

tract. In scenario 3 (high-density scenario), densification (increasing the BCR by 0.2) would 431 

cause huge adverse effects to the wind circulation level of the reference tract, which leads to 432 

4.85% AEUI increase of each neighboring tract.  433 

The results of this analysis provide evidence that, in the case of Chicago, densification strategy 434 

to increase the BCR would be desirable for the low-density tracts, but might not act as an 435 

effective policy to improve AEUI for existing medium- and high-density tracts since less 436 

ventilation would leads to AEUI increase of the neighboring tracts. This research suggests that 437 

the influence of ventilation works through adjacent tracts in reducing cooling energy intensity, 438 

especially in a city like Chicago with hot and humid summers. The spatial spillover effects must 439 

be carefully considered when developing these policy strategies in summer to reduce AEUI. For 440 

instance, the surface roughness must be kept low to potentially formulate the ventilation path, 441 

especially in dense urban environments (Barlag and Kuttler 1990; Gál and Unger 2009). The 442 

findings of this study suggest that urban ventilation should not be neglected for urban planning 443 

and design in cities with hot and humid climates. 444 
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The magnitude of the relationship between NDVI and summer EUI also provide empirical 445 

support for area-based requirement for tree-planting. Detailed design guidelines concerning the 446 

amount and placement of trees be set aside or replanted should be implemented for both new 447 

development and existing development with low NDVI (Stone and Rodgers 2001) for better 448 

residential energy performance. The findings of this study again highlight the importance of solar 449 

radiation management strategies in achieving high residential energy efficiency, as excessive 450 

isolation intensity is associated with more summer cooling energy consumption (Wilson 2013). 451 

Besides replying on reflective roofing and paving materials to enhance urban albedo20 for 452 

radiation management, planners and urban designer should conduct solar radiation analysis at 453 

early stages of site plan and establish the linkage between isolation intensity and energy 454 

efficiency.  455 

 456 

6. Conclusions  457 

 458 

This study examined the impacts of urban form and geomorphometry on EUI in Chicago using 459 

2D and 3D spatial information. Spatial regression models were estimated to explore the urban 460 

form and geomorphometry relevant drivers of residential EUI at the census tract level, as well as 461 

their spillover effects. The results confirm an evident role of various urban forms and 462 

geomorphometry elements in affecting residential electricity usage intensity. In the electricity 463 

EUI models, urban porosity and roughness length have consistent spillover effects on electricity 464 

usage intensity during summer and the whole year. Little evidence that NDVI has a similar 465 

spillover effect was found. However, NDVI can significantly reduce electricity usage intensity in 466 

its reference tract. Insolation intensity has a positive correlation with electricity usage intensity, 467 
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especially in summer. The expected opposite effect of solar intensity is insignificant for winter 468 

gas usage intensity. The results also affirm the significant effects of proximity to large water 469 

body (Lake Michigan) in shaping summer electricity usage intensity. This study also provides a 470 

nuanced finding that, when controlling other important covariates, census tracts with a high 471 

percentage of old buildings are associated with a low electricity usage intensity and high gas 472 

usage intensity. 473 

This study can also aid planners to think critically about low-carbon urban form and formulate 474 

spatially explicit policies/programs and regulations to improve residential energy efficiency 475 

through land use patterns. Neighborhood-based urban form should become part of the policies to 476 

promote sustainable energy consumption in conjunction with efforts to increase building energy 477 

efficiency at the building or household levels (e.g., building energy use benchmarking ordinance 478 

and weatherization assistance programs). Our findings indicate urban ventilation strategies (e.g., 479 

urban porosity requirement) could be useful for cities in the hot and humid climate zone. 480 

Planners and urban designers should consider the immediate context of the candidate sites during 481 

the design phase and evaluate the ventilation level of the surrounding neighborhoods. 482 

Furthermore, the neighborhood-based spatial policy, such as area-based tree-canopy 483 

requirements and solar radiation management strategies, should be carefully considered for better 484 

building energy performance. Land use strategies and designs that account for urban 485 

microclimates could be useful in reducing energy consumption of residential neighborhoods. 486 

 487 
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 493 

Notes 494 

1. Geomorphometry refers to land surface analysis by extracting surface parameters and objects. 495 

This study specifically uses three-dimensional building data and existing digital elevation model 496 

to explore the factors affecting urban solar radiation and microclimate (e.g., urban heat island 497 

effect).  498 

2. Aspect ratio is also referred to as H/W ratio. It measures the important geometrical detail 499 

about a street canyon, which is calculated as canyon height (H) divided by canyon width (W). 500 

3. We thank the editor for this viewpoint.  501 

4. The dataset can be downloaded at https://data.cityofchicago.org/Environment-Sustainable-502 

Development/Energy-Usage-2010/8yq3-m6wp/data, which displays several units of energy 503 

consumption for households, businesses, and industries in the City of Chicago during 2010. It is 504 

also worthwhile to mention that, the residential electricity and natural gas data in Chicago is 505 

provided by ComEd and People Natural Gas with a consistent pricing scheme across the city. 506 

Thus, energy price was not considered as a factor that causes spatial variations in electricity/gas 507 

consumption across the city.  508 

5. We only include winter gas EUI variable for gas consumption because residential gas in 509 

Chicago is mainly used for heating; in summer the EUI is quite low and annual EUI very close to 510 

https://en.wikipedia.org/wiki/Land_surface
https://data.cityofchicago.org/Environment-Sustainable-Development/Energy-Usage-2010/8yq3-m6wp/data
https://data.cityofchicago.org/Environment-Sustainable-Development/Energy-Usage-2010/8yq3-m6wp/data
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winter EUI. We do not include winter electricity EUI since it is not mainly used for heating, thus 511 

we cannot effectively evaluate the role of urban from and geomorphometry in influencing EUI. 512 

6. Urban canopy layer is defined as the warm layer of air near the ground level in the urban 513 

microclimate literature.  514 

7. In this study, building volume is roughly quantified as building footprint area multiplied by 515 

building height. 516 

8. It is worthwhile to note that the roughness length index should be calculated with a wind 517 

direction defined. We calculated this index using eight cardinal and ordinal directions. We got 518 

the roughness length index for each plot by averaging the value for each direction using equal 519 

weights and calculated the mean value for each census tract. 520 

9. The frontal area is the measurement of building walls facing the window flow in a particular 521 

direction. Please see Redacted (2014) and Gál and Unger (2009) for further details on how it is 522 

calculated in ArcGIS. 523 

10. Insolation is the amount of solar radiation energy received on a given surface area during a 524 

given time. In this study, we divide the total radiation by total volume of buildings to calculate 525 

the solar insolation intensity index for residential building at census tract level for summer, 526 

winter, and the whole year. 527 

11. The building height raster data was created using the 3D building database complied form 528 

Chicago City Data Portal and Open Street Map.  529 

12. We used the mean value of the Normalized Difference Vegetation Index (NDVI) to measure 530 

the amount of vegetation cover at the census tract level. NDVI has previously been used in a 531 
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large body of urban heat island studies. Higher NDVI values indicate dense and healthy 532 

vegetation coverage, while lower NDVI values often indicate impervious surfaces in urban areas. 533 

13. We calculated the summer, winter and NDVI using Landsat TM satellite images in July and 534 

December respectively. Annual NDVI was calculated as the mean value of Landsat TM satellite 535 

images in April, July, October, and December. 536 

14. Building orientation was calculated by computing the main axis of each residential building 537 

polygon. Then the weighted arithmetic mean was calculated for each census tract, weighted by 538 

the total floor area of each building.  539 

15. Multicollinearity amongst explanatory variables was examined using the variation inflation 540 

factor (VIF).  The collinearity statistics (tolerance <1, VIF<10) suggests no significant 541 

multicollinearity issues with the OLS model. 542 

16. The Moran’s I values the residuals for annual electricity, summer electricity, and winter gas 543 

models are 0.166, 0.147, and 0.193 respectively, which are all significant at the 0.001 level. 544 

17. Lagrange Multiplier statistics is commonly used as a tool to select appropriate spatial models 545 

among spatial error models, spatial lag models, and the combination of spatial lag and spatial 546 

error models. The common features of these three types of these spatial models are discussed 547 

extensively in basic econometric literature.  548 

18. After adding the spatially lagged terms of urban porosity, roughness length, and NDVI, the 549 

Moran’s I values the residuals for annual electricity, summer electricity, and winter gas OLS 550 

models are 0.125, 0.109, and 0.207 respectively, which are all significant at the 0.001 level. 551 

Again, the Robust Lagrange Multiplier statistics for standard error models are consistently 552 



 34 

significant for electricity and gas models (p <0.001), which further support the notion that there 553 

is unresolved spatial heterogeneity in the error terms after spatial lagged terms of urban porosity, 554 

roughness length, and NDVI are added. 555 

19. Loess Curve Fitting was conducted in R to trace the relationship between BCR and relevant 556 

urban form and geomorphometry variables.  Degree was set to 2 to better trace the nonlinear 557 

curves.  558 

20. Albedo is the ratio of the amount of solar radiation reflected by a surface feature to the 559 

amount incident upon it. A typical example to increase albedo in urban areas is New York City’s 560 

CoolRoofs program:http://www.nyc.gov/html/coolroofs/downloads/pdf/annual_report_2013.pdf.  561 

 562 
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